A090837 Primes p such that p, p+6, p+12, p+18 are consecutive primes and p = 6*k+1 for some k.
1741, 3301, 5101, 6361, 15901, 18211, 19471, 30091, 30631, 53611, 63691, 71341, 77551, 80911, 83431, 89101, 91291, 95911, 105361, 105601, 108631, 119551, 120811, 130681, 141061, 144241, 152941, 172981, 186871, 206191, 218131, 228841, 230221, 252151, 263071, 280921, 285451
Offset: 1
Examples
1741, 1747, 1753, 1759 are consecutive primes, 1747 = 1741 + 6, 1753 = 1741 + 12, 1759 = 1741 + 18 and 1741 = 6 * 290 + 1.
Links
- Robert Israel, Table of n, a(n) for n = 1..2000
Programs
-
Maple
filter:= p -> isprime(p) and nextprime(p) = p+6 and nextprime(p+6)=p+12 and nextprime(p+12)=p+18: select(filter, [seq(i,i=1..10^6,6)]); # Robert Israel, Nov 11 2020
-
PARI
isok(p) = my(q,r,s); isprime(p) && ((p % 6) == 1) && ((q=nextprime(p+1)) == p+6) && ((r=nextprime(q+1)) == p+12) && ((s=nextprime(r+1)) == p+18); \\ Michel Marcus, Sep 20 2019
Extensions
More terms from Michel Marcus, Sep 20 2019