A090838 Numbers n such that p(n),p(n)+6,p(n)+12,p(n)+18 are consecutive primes and p(n)=6*k+1 for some k, where p(n) denotes n-th prime.
271, 464, 682, 829, 1853, 2086, 2209, 3253, 3303, 5463, 6386, 7064, 7620, 7918, 8145, 8631, 8828, 9243, 10052, 10074, 10329, 11257, 11368, 12223, 13100, 13359, 14105, 15751, 16909, 18481, 19455, 20332, 20456, 22213, 23071, 24510, 24874, 25420, 25595, 26233
Offset: 1
Examples
p(271)=1741: 1741,1747,1753,1759 are consecutive primes,1747=1741+6,1753=1741+12,1759=1741+18 and 1741=6*290+1
Links
- Harvey P. Dale, Table of n, a(n) for n = 1..1000
Programs
-
Mathematica
PrimePi/@Transpose[Select[Partition[Prime[Range[50000]],4,1], Differences[ #] == {6,6,6}&&Mod[#[[1]],6]==1&]][[1]] (* Harvey P. Dale, Nov 04 2015 *)
Extensions
More terms from Harvey P. Dale, Nov 04 2015