A090860 Number of ways of 4-coloring a map in which there is a central circle surrounded by an annulus divided into n-1 regions. There are n regions in all.
24, 72, 120, 264, 504, 1032, 2040, 4104, 8184, 16392, 32760, 65544, 131064, 262152, 524280, 1048584, 2097144, 4194312, 8388600, 16777224, 33554424, 67108872, 134217720, 268435464, 536870904, 1073741832, 2147483640, 4294967304
Offset: 4
Keywords
Examples
We can choose 4 colors to color the inside zone, therefore b(3)=6 because we can color one zone in the annulus in 3 colors, another in 2, the other in 1, so 3*2*1=6 in all and a(4)=4*6=24. We can also add a(3)=4*3*2=24 to this sequence.
Links
- Vincenzo Librandi, Table of n, a(n) for n = 4..3000
- S. B. Step, More information.
- Index entries for linear recurrences with constant coefficients, signature (1,2).
Programs
-
Magma
[2^(n+1)-8*(-1)^n: n in [4..35]]; // Vincenzo Librandi, Oct 10 2011
-
Mathematica
LinearRecurrence[{1,2},{24,72},30] (* Harvey P. Dale, Jan 25 2020 *)
Formula
m=4, a(n)=m*((m-2)^(n-1)+(-1)^(n-1)*(m-2)); recurrence m=4, b(1)=0, b(2)=(m-1)*(m-2), b(n)=(m-2)*b(n-2)+(m-3)*b(n-1), a(n)=m*b(n-1).
O.g.f.: -24*x^3 - 12*x + 6 - 8/(1+x) - 2/(2*x-1). - R. J. Mathar, Dec 02 2007
a(n) = 24*A001045(n-2). - R. J. Mathar, Aug 30 2008
a(n) = 2^(n+1) - 8*(-1)^n. - Vincenzo Librandi, Oct 10 2011
Comments