A090868 Number of partitions of n such that the set of odd parts has only one element.
1, 1, 3, 2, 6, 5, 11, 8, 20, 15, 32, 24, 51, 39, 80, 58, 119, 90, 175, 130, 255, 190, 361, 268, 508, 379, 706, 522, 967, 722, 1313, 974, 1771, 1317, 2363, 1754, 3131, 2330, 4123, 3058, 5388, 4010, 7001, 5200, 9053, 6731, 11631, 8642, 14878, 11068, 18944, 14076
Offset: 1
Links
- Vaclav Kotesovec, Table of n, a(n) for n = 1..14572 (terms 1..5000 from Alois P. Heinz)
Crossrefs
Cf. A066897.
Programs
-
Maple
b:= proc(n, i, t) option remember; `if`(n=0, `if`(t, 1, 0), `if`(i<1, 0, add(b(n-i*j, i-1, t or j>0 and i::odd), j=0..`if`(t and i::odd, 0, n/i)))) end: a:= n-> b(n$2, false): seq(a(n), n=1..60); # Alois P. Heinz, Jun 30 2016
-
Mathematica
first Needs["DiscreteMath`Combinatorica`"], then f[n_] := Count[ Plus @@@ Mod[ Union /@ Partitions[n], 2], 1]; Table[ f[n], {n, 1, 51}] (* Robert G. Wilson v, Feb 16 2004 *)
Formula
G.f.: Sum_{m>0} x^(2*m-1)/(1-x^(2*m-1))/Product_{m>0} (1-x^(2*m)).
Extensions
More terms from Robert G. Wilson v, Feb 16 2004