A090888 Matrix defined by a(n,k) = 3^n*Fibonacci(k) - 2^n*Fibonacci(k-2), read by antidiagonals.
1, 2, 0, 4, 1, 1, 8, 5, 3, 1, 16, 19, 9, 4, 2, 32, 65, 27, 14, 7, 3, 64, 211, 81, 46, 23, 11, 5, 128, 665, 243, 146, 73, 37, 18, 8, 256, 2059, 729, 454, 227, 119, 60, 29, 13, 512, 6305, 2187, 1394, 697, 373, 192, 97, 47, 21, 1024, 19171, 6561, 4246, 2123, 1151, 600, 311
Offset: 0
Examples
1 0 1 1 2 3 5 8 13 21 34 2 1 3 4 7 11 18 29 47 76 123 4 5 9 14 23 37 60 97 157 254 411 8 19 27 46 73 119 192 311 503 814 1317 16 65 81 146 227 373 600 973 1573 2546 4119 32 211 243 454 697 1151 1848 2999 4847 7846 12693 64 665 729 1394 2123 3517 5640 9157 14797 23954 38751 a(5,3) = 454 because Fibonacci(3) = 2, Fibonacci(1) = 1 and (2 * 3^5) - (1 * 2^5) = 454.
Links
- Michael De Vlieger, Table of n, a(n) for n = 0..10000
- Ross La Haye, Binary relations on the power set of an n-element set, JIS 12 (2009) 09.2.6, table 4.
- Eric Weisstein, Fibonacci Number
- Eric Weisstein, Lucas Number
Programs
-
Mathematica
Table[3^(n - k) Fibonacci@ k - 2^(n - k) Fibonacci[k - 2], {n, 0, 10}, {k, 0, n}] // Flatten (* Michael De Vlieger, Nov 28 2015 *)
Formula
a(n, k) = 3^n*Fibonacci(k) - 2^n*Fibonacci(k-2).
a(n, 0) = 2^n, a(n, 1) = 3^n - 2^n, a(n, k) = a(n, k-1) + a(n, k-2) for k > 1.
a(0, k) = Fibonacci(k-1), a(1, k) = Lucas(k), a(n, k) = 5a(n-1, k) - 6a(n-2, k) for n > 1.
O.g.f. (by rows) = (-2^n + (2^(n+1) - 3^n)x)/(-1+x+x^2). - Ross La Haye, Mar 30 2006
a(n,1) - a(n,0) = A003063(n+1). - Ross La Haye, Jun 22 2007
Binomial transform (by columns) of A118654. - Ross La Haye, Jun 22 2007
Extensions
More terms from Ray Chandler, Oct 27 2004
Comments