A090909 Terms a(k) of A073869 for which a(k-1) = a(k), and a(k) and a(k+1) are distinct.
2, 5, 7, 10, 13, 15, 18, 20, 23, 26, 28, 31, 34, 36, 39, 41, 44, 47, 49, 52, 54, 57, 60, 62, 65, 68, 70, 73, 75, 78, 81, 83, 86, 89, 91, 94, 96, 99, 102, 104, 107, 109, 112, 115, 117, 120, 123, 125, 128, 130, 133, 136, 138, 141, 143, 146, 149, 151, 154, 157, 159, 162
Offset: 1
Keywords
Examples
A073869 = A005206 = 0,1,1,2,3,3,4,4,5,6,6,... The pair (1,1) occurs at k = 2.
Links
- G. C. Greubel, Table of n, a(n) for n = 0..10000
- F. M. Dekking, On Hofstadter's G-sequence, Journal of Integer Sequences 26 (2023), Article 23.9.2, 1-11.
Crossrefs
Programs
-
Magma
[Floor((3+Sqrt(5))*n/2): n in [0..80]]; // G. C. Greubel, Sep 12 2023
-
Mathematica
(* First program *) A002251= Fold[Append[#1, #2 Ceiling[#2/GoldenRatio] -Total[#1]] &, {1}, Range[2, 500]] - 1; (* Birkas Gyorgy's code of A019444, modified *) A090909= Join[{0}, Select[Partition[A002251, 2, 1], #[[2]] > #[[1]] &][[All, 2]]] (* G. C. Greubel, Sep 12 2023 *) (* Second program *) Floor[GoldenRatio^2*Range[0,80]] (* G. C. Greubel, Sep 12 2023 *)
-
SageMath
[floor(golden_ratio^2*n) for n in range(81)] # G. C. Greubel, Sep 12 2023
Formula
a(n) = floor(phi^2*n), where phi = (1+sqrt(5))/2. - Gary Detlefs, Mar 10 2011
Extensions
More terms from R. J. Mathar, Sep 29 2017
Name corrected by Michel Dekking, Dec 13 2024
Comments