A090968 Primes p such that p^2 divides 19^(p-1) - 1.
3, 7, 13, 43, 137, 63061489
Offset: 1
References
- J.-M. De Koninck, Ces nombres qui nous fascinent, Entry 43, p. 17, Ellipses, Paris 2008.
- Paulo Ribenboim, The Little Book Of Big Primes, Springer-Verlag, NY 1991, page 170.
- Roozbeh Hazrat, Mathematica: A Problem-Centered Approach, Springer 2010, pp. 39, 171. [Harvey P. Dale, Oct 17 2011]
Links
- Amir Akbary and Sahar Siavashi, The Largest Known Wieferich Numbers, INTEGERS, 18(2018), A3. See Table 1 p. 5.
- C. Caldwell, Fermat quotient
- W. Keller and J. Richstein Fermat quotients q_p(a) that are divisible by p
Programs
-
Mathematica
NextPrim[n_] := Block[{k = n + 1}, While[ !PrimeQ[k], k++ ]; k]; p = 1; Do[ p = NextPrim[p]; If[PowerMod[19, p - 1, p^2] == 1, Print[p]], {n, 1, 2*10^8}] Select[Prime[Range[4*10^6]],PowerMod[19,#-1,#^2]==1&] (* Harvey P. Dale, Nov 08 2017 *)
Comments