cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A090981 Triangle read by rows: T(n,k) = number of Schroeder paths of length 2n and having k ascents.

Original entry on oeis.org

1, 1, 1, 1, 4, 1, 1, 11, 9, 1, 1, 26, 46, 16, 1, 1, 57, 180, 130, 25, 1, 1, 120, 603, 750, 295, 36, 1, 1, 247, 1827, 3507, 2345, 581, 49, 1, 1, 502, 5164, 14224, 14518, 6076, 1036, 64, 1, 1, 1013, 13878, 52068, 75558, 48006, 13776, 1716, 81, 1, 1, 2036, 35905, 176430
Offset: 0

Views

Author

Emeric Deutsch, Feb 29 2004

Keywords

Comments

A Schroeder path is a lattice path in the first quadrant, from the origin to a point on the x-axis and consisting of steps U=(1,1), D=(1,-1) and H=(2,0) of length 2n and having k ascents (i.e., maximal strings of (1,1) steps).
Row sums give A006318 (the large Schroeder numbers). Column 1 gives A000295 (the Eulerian numbers).
Another version of the triangle T(n,k), 0<=k<=n, read by rows; given by [1, 0, 2, 0, 2, 0, 2, 0, 2, 0, 2, 0, 2, ...] DELTA [0, 1, 0, 1, 0, 1, 0, 1, 0, 1, ...] = 1; 1, 0; 1, 1, 0; 1, 4, 1, 0; 1, 11, 9, 1, 0; ..., where DELTA is the operator defined in A084938. - Philippe Deléham, Jun 14 2004
The expected number of ascents in a Schroeder n-path is asymptotically (sqrt(2)-1)*n for large n. (Previously formulated as conjecture by David Callan, Jul 25 2008, now proven.) - Valerie Roitner, Aug 06 2020

Examples

			T(2,1)=4 because we have the following four Schroeder paths of length 4 with one ascent: (U)HD, (UU)DD, H(U)D and (U)DH (ascents shown between parentheses).
Triangle starts:
  1;
  1,   1;
  1,   4,   1;
  1,  11,   9,   1;
  1,  26,  46,  16,   1;
  1,  57, 180, 130,  25,  1;
  ...
		

Crossrefs

Programs

  • Magma
    [[k le 0 select 1 else Binomial(n+1,k)*(&+[Binomial(n+1,j)* Binomial(n-j-1,k-1): j in [0..n-k]])/(n+1): k in [0..n]]: n in [0..12]]; // G. C. Greubel, Feb 02 2019
    
  • Maple
    T := (n,k)->binomial(n+1,k)*add(binomial(n+1,j)*binomial(n-j-1,k-1),j=0..n-k)/(n+1): seq(seq(T(n,k),k=0..n),n=0..12);
  • Mathematica
    m = 11(*rows*); G = 0; Do[G = Series[(1+G^2 z(1+(t-1)z))/(1-t z), {t, 0, m-1}, {z, 0, m-1}] // Normal // Expand, {m}]; CoefficientList[#, t]& /@ CoefficientList[G, z]//Flatten (* Jean-François Alcover, Jan 22 2019 *)
    Table[Binomial[n+1,k]*Sum[Binomial[n+1,j]*Binomial[n-j-1,k-1], {j,0,n-k}]/(n+1), {n,0,12}, {k,0,n}]//Flatten (* G. C. Greubel, Feb 02 2019 *)
  • PARI
    {T(n,k) = if(k==0, 1, binomial(n+1,k)*sum(j=0,n-k, binomial(n+1,j) *binomial(n- j-1, k-1))/(n+1))};
    for(n=0,12, for(k=0,n, print1(T(n,k), ", "))) \\ G. C. Greubel, Feb 02 2019
    
  • Sage
    [[1] + [binomial(n+1,k)*sum(binomial(n+1,j)*binomial(n-j-1,k-1) for j in (0..n-k))/(n+1) for k in (1..n)] for n in (0..12)] # G. C. Greubel, Feb 02 2019

Formula

T(n, k) = binomial(n+1, k)*Sum_{j=0..n-k} binomial(n+1, j)*binomial(n-j-1, k-1)/(n+1).
G.f.: G=G(t, z) satisfies z*(1-z+t*z)G^2 - (1-t*z)G + 1 = 0.