A090981 Triangle read by rows: T(n,k) = number of Schroeder paths of length 2n and having k ascents.
1, 1, 1, 1, 4, 1, 1, 11, 9, 1, 1, 26, 46, 16, 1, 1, 57, 180, 130, 25, 1, 1, 120, 603, 750, 295, 36, 1, 1, 247, 1827, 3507, 2345, 581, 49, 1, 1, 502, 5164, 14224, 14518, 6076, 1036, 64, 1, 1, 1013, 13878, 52068, 75558, 48006, 13776, 1716, 81, 1, 1, 2036, 35905, 176430
Offset: 0
Examples
T(2,1)=4 because we have the following four Schroeder paths of length 4 with one ascent: (U)HD, (UU)DD, H(U)D and (U)DH (ascents shown between parentheses). Triangle starts: 1; 1, 1; 1, 4, 1; 1, 11, 9, 1; 1, 26, 46, 16, 1; 1, 57, 180, 130, 25, 1; ...
Links
- G. C. Greubel, Rows n=0..100 of triangle, flattened
- L. Ferrari, E. Munarini, Enumeration of Edges in Some Lattices of Paths, J. Int. Seq. 17 (2014) #14.1.5.
- Zhicong Lin, Dongsu Kim, A sextuple equidistribution arising in Pattern Avoidance, arXiv:1612.02964 [math.CO], 2016.
- Valerie Roitner, The vectorial kernel method for walks wíth longer steps, arXiv:2008.02240 [math.CO], 2020.
Programs
-
Magma
[[k le 0 select 1 else Binomial(n+1,k)*(&+[Binomial(n+1,j)* Binomial(n-j-1,k-1): j in [0..n-k]])/(n+1): k in [0..n]]: n in [0..12]]; // G. C. Greubel, Feb 02 2019
-
Maple
T := (n,k)->binomial(n+1,k)*add(binomial(n+1,j)*binomial(n-j-1,k-1),j=0..n-k)/(n+1): seq(seq(T(n,k),k=0..n),n=0..12);
-
Mathematica
m = 11(*rows*); G = 0; Do[G = Series[(1+G^2 z(1+(t-1)z))/(1-t z), {t, 0, m-1}, {z, 0, m-1}] // Normal // Expand, {m}]; CoefficientList[#, t]& /@ CoefficientList[G, z]//Flatten (* Jean-François Alcover, Jan 22 2019 *) Table[Binomial[n+1,k]*Sum[Binomial[n+1,j]*Binomial[n-j-1,k-1], {j,0,n-k}]/(n+1), {n,0,12}, {k,0,n}]//Flatten (* G. C. Greubel, Feb 02 2019 *)
-
PARI
{T(n,k) = if(k==0, 1, binomial(n+1,k)*sum(j=0,n-k, binomial(n+1,j) *binomial(n- j-1, k-1))/(n+1))}; for(n=0,12, for(k=0,n, print1(T(n,k), ", "))) \\ G. C. Greubel, Feb 02 2019
-
Sage
[[1] + [binomial(n+1,k)*sum(binomial(n+1,j)*binomial(n-j-1,k-1) for j in (0..n-k))/(n+1) for k in (1..n)] for n in (0..12)] # G. C. Greubel, Feb 02 2019
Formula
T(n, k) = binomial(n+1, k)*Sum_{j=0..n-k} binomial(n+1, j)*binomial(n-j-1, k-1)/(n+1).
G.f.: G=G(t, z) satisfies z*(1-z+t*z)G^2 - (1-t*z)G + 1 = 0.
Comments