cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A090982 a(n) = partitions(n)*partitions(n+1).

Original entry on oeis.org

1, 2, 6, 15, 35, 77, 165, 330, 660, 1260, 2352, 4312, 7777, 13635, 23760, 40656, 68607, 114345, 188650, 307230, 496584, 793584, 1257510, 1976625, 3083850, 4769688, 7332360, 11191180, 16972670, 25582260, 38342568, 57123858, 84683907
Offset: 0

Views

Author

Wouter Meeussen, Feb 28 2004

Keywords

Examples

			a(3)=15 because partitions(3)*partitions(4) = 3*5 = 15.
		

Crossrefs

Programs

  • Maple
    with(combinat): seq(numbpart(k)*numbpart(k+1), k=0..32) ; # Zerinvary Lajos, Jun 06 2007
  • Mathematica
    Table[PartitionsP[n + 1]*PartitionsP[n], {n, 0, 36}]
    Times@@@Partition[PartitionsP[Range[0,40]],2,1] (* Harvey P. Dale, May 23 2025 *)
  • PARI
    a(n)=numbpart(n)*numbpart(n+1) \\ Charles R Greathouse IV, Sep 02 2009

Formula

a(n) ~ exp(2*Pi*sqrt(2*n/3))/(48*n^2) * (1 + (11*Pi/(12*sqrt(6)) - sqrt(6)/Pi)/sqrt(n) + (3/(2*Pi^2) - 11/6 + 121*Pi^2/1728)/n). - Vaclav Kotesovec, Nov 04 2016