A091000 Number of closed walks of length n on the Petersen graph rooted at a given vertex.
1, 0, 3, 0, 15, 12, 99, 168, 759, 1764, 6315, 16896, 54783, 156156, 484851, 1421784, 4330887, 12861588, 38846907, 116016432, 349097871, 1045196460, 3139783683, 9410962440, 28249664535, 84715439172, 254213426379, 762506061408
Offset: 0
Links
- G. C. Greubel, Table of n, a(n) for n = 0..1000
- Index entries for linear recurrences with constant coefficients, signature (2,5,-6).
Programs
-
GAP
List([0..30], n -> (3^n+(-2)^(n+2)+5)/10); # G. C. Greubel, Feb 01 2019
-
Magma
[(3^n+(-2)^(n+2)+5)/10: n in [0..30]]; // G. C. Greubel, Feb 01 2019
-
Mathematica
Table[{1,0,0}.MatrixPower[{{0,3,0},{1,0,2},{0,1,2}},n].{1,0,0},{n,1,100}] (* Adam P. Goucher, Sep 11 2013 *) LinearRecurrence[{2,5,-6}, {1,0,3}, 30] (* G. C. Greubel, Feb 01 2019 *)
-
PARI
vector(30, n, n--; (3^n+(-2)^(n+2)+5)/10) \\ G. C. Greubel, Feb 01 2019
-
Sage
[(3^n+(-2)^(n+2)+5)/10 for n in (0..30)] # G. C. Greubel, Feb 01 2019
Comments