cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A091000 Number of closed walks of length n on the Petersen graph rooted at a given vertex.

Original entry on oeis.org

1, 0, 3, 0, 15, 12, 99, 168, 759, 1764, 6315, 16896, 54783, 156156, 484851, 1421784, 4330887, 12861588, 38846907, 116016432, 349097871, 1045196460, 3139783683, 9410962440, 28249664535, 84715439172, 254213426379, 762506061408
Offset: 0

Views

Author

Paul Barry, Dec 12 2003

Keywords

Comments

If p >= 7 is a prime, then p divides a(p) (provable by easy application of Fermat's Little Theorem). - Adam P. Goucher, Sep 11 2013

Programs

  • GAP
    List([0..30], n -> (3^n+(-2)^(n+2)+5)/10); # G. C. Greubel, Feb 01 2019
  • Magma
    [(3^n+(-2)^(n+2)+5)/10: n in [0..30]]; // G. C. Greubel, Feb 01 2019
    
  • Mathematica
    Table[{1,0,0}.MatrixPower[{{0,3,0},{1,0,2},{0,1,2}},n].{1,0,0},{n,1,100}] (* Adam P. Goucher, Sep 11 2013 *)
    LinearRecurrence[{2,5,-6}, {1,0,3}, 30] (* G. C. Greubel, Feb 01 2019 *)
  • PARI
    vector(30, n, n--; (3^n+(-2)^(n+2)+5)/10) \\ G. C. Greubel, Feb 01 2019
    
  • Sage
    [(3^n+(-2)^(n+2)+5)/10 for n in (0..30)] # G. C. Greubel, Feb 01 2019
    

Formula

G.f.: (1-2*x-2*x^2)/((1-x)*(1+2*x)*(1-3*x)).
a(n) = (3^n + (-2)^(n+2) + 5)/10.
a(n) = (A000244(n) + 9*A001045(n+1)(-1)^n + 6*A001045(n)(-1)^(n+1))/10.
3^n = a(n) + 3*A091001(n) + 6*A091002(n)
E.g.f.: (exp(3*x) + 4*exp(-2*x) + 5*exp(x))/10. - G. C. Greubel, Feb 01 2019