A091002
Number of walks of length n between non-adjacent nodes on the Petersen graph.
Original entry on oeis.org
0, 0, 1, 2, 9, 22, 77, 210, 673, 1934, 5973, 17578, 53417, 158886, 479389, 1432706, 4309041, 12905278, 38759525, 116191194, 348748345, 1045895510, 3138385581, 9413758642, 28244072129, 84726623982, 254191056757, 762550800650, 2287697141193, 6863001945094
Offset: 0
-
List([0..30], n -> (3^(n+1) - (-2)^(n+1) - 5)/30); # G. C. Greubel, Feb 01 2019
-
[(3^(n+1) - (-2)^(n+1) - 5)/30: n in [0..30]]; // G. C. Greubel, Feb 01 2019
-
a:=n->sum(binomial(n-k, k)*6^(k-1), k=1..n): seq(a(n),n=0..27); # Zerinvary Lajos, Sep 30 2006
-
Table[(3^n -(-2)^n - 5)/30, {n, 40}] (* Vladimir Joseph Stephan Orlovsky, Jun 20 2011 *)
LinearRecurrence[{2,5,-6}, {0,0,1}, 30] (* G. C. Greubel, Feb 01 2019 *)
-
vector(30, n, n--; (3^(n+1) - (-2)^(n+1) - 5)/30) \\ G. C. Greubel, Feb 01 2019
-
from sage.combinat.sloane_functions import recur_gen2b; it = recur_gen2b(1,2,1,6, lambda n: 1); [next(it) for i in range(0,29)] # Zerinvary Lajos, Jul 03 2008
-
[(3^(n+1) - (-2)^(n+1) - 5)/30 for n in range(30)] # G. C. Greubel, Feb 01 2019
A091001
Number of walks of length n between adjacent nodes on the Petersen graph.
Original entry on oeis.org
0, 1, 0, 5, 4, 33, 56, 253, 588, 2105, 5632, 18261, 52052, 161617, 473928, 1443629, 4287196, 12948969, 38672144, 116365957, 348398820, 1046594561, 3136987480, 9416554845, 28238479724, 84737808793, 254168687136, 762595539893
Offset: 0
- N. Biggs, Algebraic Graph Theory, Cambridge, 2nd. Ed., 1993, p. 20.
- F. Harary, Graph Theory, Addison-Wesley, 1969, p. 89.
-
List([0..30], n -> (3^(n+1)+(-2)^(n+3)+5)/30); # G. C. Greubel, Feb 01 2019
-
[(3^(n+1)+(-2)^(n+3)+5)/30: n in [0..30]]; // G. C. Greubel, Feb 01 2019
-
Table[(3^(n+1)+(-2)^(n+3)+5)/30, {n,0,30}] (* or *) LinearRecurrence[{2, 5,-6}, {0,1,0}, 30] (* G. C. Greubel, Feb 01 2019 *)
-
vector(30, n, n--; (3^(n+1)+(-2)^(n+3)+5)/30) \\ G. C. Greubel, Feb 01 2019
-
[(3^(n+1)+(-2)^(n+3)+5)/30 for n in (0..30)] # G. C. Greubel, Feb 01 2019
A091003
Expansion of (1-3*x^2)/((1-2*x)*(1+3*x)).
Original entry on oeis.org
1, -1, 4, -10, 34, -94, 298, -862, 2650, -7822, 23722, -70654, 212986, -636910, 1914826, -5736286, 17225242, -51642958, 154994410, -464852158, 1394818618, -4183931566, 12552843274, -37656432670, 112973492314, -338912088334, 1016753042218
Offset: 0
-
Concatenation([1], List([1..30], n -> (2^n + 4*(-3)^n)/10)); # G. C. Greubel, Feb 01 2019
-
[1] cat [(2^n + 4*(-3)^n)/10: n in [1..30]]; // G. C. Greubel, Feb 01 2019
-
CoefficientList[Series[(1-3x^2)/((1-2x)(1+3x)),{x,0,30}],x] (* Harvey P. Dale, Dec 23 2014 *)
Join[{1}, LinearRecurrence[{-1,6}, {-1,4}, 30]] (* G. C. Greubel, Feb 01 2019 *)
-
vector(30, n, n--; (2^n + 4*(-3)^n + 5*0^n)/10) \\ G. C. Greubel, Feb 01 2019
-
[1] + [(2^n + 4*(-3)^n)/10 for n in (1..30)] # G. C. Greubel, Feb 01 2019
A229031
Number of 5-colorings of the strong product of the complete graph K2 and the cycle graph Cn.
Original entry on oeis.org
120, 0, 2400, 3840, 63360, 215040, 1943040, 9031680, 64665600, 346030080, 2243911680, 12792299520, 79437987840, 465890181120, 2838290104320, 16857940623360, 101834835886080, 608260231004160, 3660556491816960, 21919358464819200, 131692072607416320, 789448748118835200, 4739507238312345600, 28425784430470103040
Offset: 2
For n = 2, the graph is the complete graph K4, which has a(4) = 120 different 5-colorings corresponding to ordered 4-subsets of {1,2,3,4,5}.
For n = 3, the graph is the complete graph K6, which cannot be 5-colored, so a(3) = 0. Equivalently, there are no closed walks of length 3 on the Petersen graph.
-
Table[2^n(3^n+4(-2)^n+5),{n,2,25}]
LinearRecurrence[{4,20,-48},{120,0,2400},24] (* or *) Drop[CoefficientList[Series[-120*x^2*(4*x - 1) / ((2*x - 1) * (4*x + 1) * (6*x - 1)), {x, 0, 25}], x], 2] (* Indranil Ghosh, Mar 03 2017 *)
-
a(n) = (2^n) * (3^n + 4*(-2)^n + 5) \\ Indranil Ghosh, Mar 03 2017
-
def A229031(n) : return (2**n) * (3**n + 4*(-2)**n +5) # Indranil Ghosh, Mar 03 2017
Showing 1-4 of 4 results.
Comments