cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-6 of 6 results.

A140431 2*A094555(n).

Original entry on oeis.org

0, 2, 2, 12, 22, 92, 222, 772, 2102, 6732, 19342, 59732, 175782, 534172, 1588862, 4793892, 14327062, 43090412, 129052782, 387595252, 1161911942, 3487483452, 10458955102, 31383855812, 94137586422, 282440721292, 847266239822
Offset: 0

Views

Author

Paul Curtz, Jun 19 2008

Keywords

Formula

b(n) = A091002(n-1); b(n+1)-3b(n)= A077925(n-2), where b(n)=floor(a(n)/10).
a(n) = (1-(-2)^n+3^n)/3 for n>0. a(n) = 2*a(n-1)+5*a(n-2)-6*a(n-3) for n>3. G.f.: 2*x*(1-x-x^2)/((1-x)*(1+2*x)*(1-3*x)). [Colin Barker, Sep 21 2012]

Extensions

Edited and extended by R. J. Mathar, Aug 02 2008

A091000 Number of closed walks of length n on the Petersen graph rooted at a given vertex.

Original entry on oeis.org

1, 0, 3, 0, 15, 12, 99, 168, 759, 1764, 6315, 16896, 54783, 156156, 484851, 1421784, 4330887, 12861588, 38846907, 116016432, 349097871, 1045196460, 3139783683, 9410962440, 28249664535, 84715439172, 254213426379, 762506061408
Offset: 0

Views

Author

Paul Barry, Dec 12 2003

Keywords

Comments

If p >= 7 is a prime, then p divides a(p) (provable by easy application of Fermat's Little Theorem). - Adam P. Goucher, Sep 11 2013

Programs

  • GAP
    List([0..30], n -> (3^n+(-2)^(n+2)+5)/10); # G. C. Greubel, Feb 01 2019
  • Magma
    [(3^n+(-2)^(n+2)+5)/10: n in [0..30]]; // G. C. Greubel, Feb 01 2019
    
  • Mathematica
    Table[{1,0,0}.MatrixPower[{{0,3,0},{1,0,2},{0,1,2}},n].{1,0,0},{n,1,100}] (* Adam P. Goucher, Sep 11 2013 *)
    LinearRecurrence[{2,5,-6}, {1,0,3}, 30] (* G. C. Greubel, Feb 01 2019 *)
  • PARI
    vector(30, n, n--; (3^n+(-2)^(n+2)+5)/10) \\ G. C. Greubel, Feb 01 2019
    
  • Sage
    [(3^n+(-2)^(n+2)+5)/10 for n in (0..30)] # G. C. Greubel, Feb 01 2019
    

Formula

G.f.: (1-2*x-2*x^2)/((1-x)*(1+2*x)*(1-3*x)).
a(n) = (3^n + (-2)^(n+2) + 5)/10.
a(n) = (A000244(n) + 9*A001045(n+1)(-1)^n + 6*A001045(n)(-1)^(n+1))/10.
3^n = a(n) + 3*A091001(n) + 6*A091002(n)
E.g.f.: (exp(3*x) + 4*exp(-2*x) + 5*exp(x))/10. - G. C. Greubel, Feb 01 2019

A091001 Number of walks of length n between adjacent nodes on the Petersen graph.

Original entry on oeis.org

0, 1, 0, 5, 4, 33, 56, 253, 588, 2105, 5632, 18261, 52052, 161617, 473928, 1443629, 4287196, 12948969, 38672144, 116365957, 348398820, 1046594561, 3136987480, 9416554845, 28238479724, 84737808793, 254168687136, 762595539893
Offset: 0

Views

Author

Paul Barry, Dec 12 2003

Keywords

References

  • N. Biggs, Algebraic Graph Theory, Cambridge, 2nd. Ed., 1993, p. 20.
  • F. Harary, Graph Theory, Addison-Wesley, 1969, p. 89.

Programs

  • GAP
    List([0..30], n -> (3^(n+1)+(-2)^(n+3)+5)/30); # G. C. Greubel, Feb 01 2019
  • Magma
    [(3^(n+1)+(-2)^(n+3)+5)/30: n in [0..30]]; // G. C. Greubel, Feb 01 2019
    
  • Mathematica
    Table[(3^(n+1)+(-2)^(n+3)+5)/30, {n,0,30}] (* or *) LinearRecurrence[{2, 5,-6}, {0,1,0}, 30] (* G. C. Greubel, Feb 01 2019 *)
  • PARI
    vector(30, n, n--; (3^(n+1)+(-2)^(n+3)+5)/30) \\ G. C. Greubel, Feb 01 2019
    
  • Sage
    [(3^(n+1)+(-2)^(n+3)+5)/30 for n in (0..30)] # G. C. Greubel, Feb 01 2019
    

Formula

G.f.: x*(1-2*x)/((1-x)*(1+2*x)*(1-3*x)).
a(n) = (3^(n+1) + (-2)^(n+3) + 5)/30.
3^n = A091000(n) + 3*a(n) + 6*A091002(n).
a(n) = (A000244(n) - A001045(n+1)*(-1)^n - 6*A001045(n)*(-1)^n)/10.
a(n) = A091002(n+1) - 2*A091002(n). - R. J. Mathar, Oct 30 2014
E.g.f.: (3*exp(3*x) - 8*exp(-2*x) +5*exp(x))/30. - G. C. Greubel, Feb 01 2019

A091005 Expansion of x^2/((1-2*x)*(1+3*x)).

Original entry on oeis.org

0, 0, 1, -1, 7, -13, 55, -133, 463, -1261, 4039, -11605, 35839, -105469, 320503, -953317, 2876335, -8596237, 25854247, -77431669, 232557151, -697147165, 2092490071, -6275373061, 18830313487, -56482551853, 169464432775, -508359743893, 1525146340543
Offset: 0

Views

Author

Paul Barry, Dec 13 2003

Keywords

Comments

Inverse binomial transform of A091002.

Crossrefs

Cf. A015441.

Programs

  • GAP
    Concatenation([0], List([1..30], n -> (3*2^n + 2*(-3)^n)/30)); # G. C. Greubel, Feb 01 2019
  • Magma
    [0] cat [(3*2^n + 2*(-3)^n)/30: n in [1..30]]; // G. C. Greubel, Feb 01 2019
    
  • Mathematica
    a[n_]:=(MatrixPower[{{1,4},{1,-2}},n].{{1},{1}})[[2,1]]; Table[a[n],{n,0,40}] (* Vladimir Joseph Stephan Orlovsky, Feb 19 2010 *)
    Join[{0, 0}, LinearRecurrence[{-1, 6}, {1, -1}, 30]] (* G. C. Greubel, Feb 01 2019 *)
    CoefficientList[Series[x^2/((1-2x)(1+3x)),{x,0,30}],x] (* Harvey P. Dale, Apr 30 2022 *)
  • PARI
    vector(30, n, n--; (3*2^n + 2*(-3)^n - 5*0^n)/30) \\ G. C. Greubel, Feb 01 2019
    
  • Sage
    [0] + [(3*2^n + 2*(-3)^n)/30 for n in (1..30)] # G. C. Greubel, Feb 01 2019
    

Formula

2^n = A091003(n) + 3*A091004(n) + 6*a(n).
a(n) = (3*2^n + 2*(-3)^n - 5*0^n)/30.
E.g.f.: (3*exp(2*x) + 2*exp(-3*x) - 5)/30. - G. C. Greubel, Feb 01 2019

A249992 Expansion of 1/((1+x)*(1+2*x)*(1-3*x)).

Original entry on oeis.org

1, 0, 7, 6, 49, 84, 379, 882, 3157, 8448, 27391, 78078, 242425, 710892, 2165443, 6430794, 19423453, 58008216, 174548935, 522598230, 1569891841, 4705481220, 14124832267, 42357719586, 127106713189, 381253030704, 1143893309839, 3431411494062, 10294771353097
Offset: 0

Views

Author

Alex Ratushnyak, Dec 27 2014

Keywords

Crossrefs

Cf. A249993.
Cf. A000392: expansion of x^3/((1-x)*(1-2*x)*(1-3*x)).
Cf. A091002: expansion of x^2/((1-x)*(1+2*x)*(1-3*x)).
Cf. A094705: expansion of x/((1+x)*(1-2*x)*(1-3*x)).

Programs

  • Magma
    [(3^(n+2) + (-1)^n*(2^(n+4) - 5))/20: n in [0..50]]; // G. C. Greubel, Jul 21 2022
    
  • Maple
    seq((9/20)*3^n+(4/5)*(-2)^n-(1/4)*(-1)^n, n=0 .. 100); # Robert Israel, Dec 28 2014
  • Mathematica
    LinearRecurrence[{0, 7, 6}, {1, 0, 7}, 29] (* Jean-François Alcover, Oct 05 2017 *)
    CoefficientList[Series[1/((1+x)(1+2x)(1-3x)),{x,0,30}],x] (* Harvey P. Dale, May 26 2020 *)
  • PARI
    Vec(1/((1+x)*(1+2*x)*(1-3*x)) + O(x^50)) \\ Michel Marcus, Dec 28 2014
    
  • SageMath
    [(3^(n+2) +(-1)^n*(2^(n+4) -5))/20 for n in (0..50)] # G. C. Greubel, Jul 21 2022

Formula

G.f.: 1/((1+x)*(1+2*x)*(1-3*x)).
a(n) = ( 3^(n+2) + (2^(n+4) - 5)*(-1)^n )/20. - Colin Barker, Dec 28 2014
a(n) = 7*a(n-2) + 6*a(n-3). - Colin Barker, Dec 28 2014
E.g.f.: (9/20)*exp(3*x) + (4/5)*exp(-2*x) - (1/4)*exp(-x). - Robert Israel, Dec 28 2014

A341091 Triangle read by rows: Coefficients for calculation of the sum of all the finite differences from order zero to order k. Sum_{n=0..k} T(n, k)*b(n) = b(0) + b(1) + ... + b(k) + (b(1) - b(0)) + ... + (b(k) - b(k-1)) + ((b(2) - b(1)) - (b(1) - b(0))) + ... .

Original entry on oeis.org

1, 0, 2, 1, -1, 3, 0, 3, -3, 4, 1, -2, 7, -6, 5, 0, 4, -8, 14, -10, 6, 1, -3, 13, -21, 25, -15, 7, 0, 5, -15, 35, -45, 41, -21, 8, 1, -4, 21, -49, 81, -85, 63, -28, 9, 0, 6, -24, 71, -129, 167, -147, 92, -36, 10, 1, -5, 31, -94, 201, -295, 315, -238, 129, -45, 11
Offset: 0

Views

Author

Thomas Scheuerle, Feb 13 2022

Keywords

Comments

If we want to calculate the sum of finite differences for a sequence b(n):
b(0)*T(0, n) + ... + b(n)*T(n, n) = b(0) + b(1) + ... + b(n) + (b(1) - b(0)) + ... + (b(n) - b(n-1)) + ((b(2) - b(1)) - (b(1) - b(0))) + ... This sum includes the sequence b(n) itself. This defines an invertible linear sequence transformation with a deep connection to Bernoulli numbers and other interesting sequences of rational numbers.
From Thomas Scheuerle, Apr 29 2024: (Start)
These are the coefficients of the polynomials defined by the recurrence: P(k, x) = P(k - 1, x) + (x^2 - x)*P(k - 2, x) + 1, with P(-1, x) = 0 and P(0, x) = 1. This can also be expressed as P(k, x) = Sum_{m=1..k+1} binomial(k+2 - m, m)*(x^2 - x)^(m - 1) = Sum_{n=0..k} T(n, k)*x^(k-n). If we would evaluate P(k, t) as sequence for some fixed t then we get the expansion of 1/((1 - x)*(1+(t-1)*x)*(1 - t*x)).
We may replace (x^2 - x) by (x^(-2) - x^(-1)) to get the coefficients in reverse order: x^k*Sum_{m=1..k+1} binomial(k+2 - m, m)*(x^(-2) - x^(-1))^(m - 1) = Sum_{n=0..k} T(n, k)*x^n = F(k, x). If we would evaluate F(k, t) as sequence for some fixed t then we get the expansion of 1/((1 - x)*(1 - (t-1)*x)*(1 - t*x)). (End)

Examples

			Triangle begins with T(n, k):
   n=   0,  1,   2,   3,   4,   5,   6,   7,   8
  k=0   1
  k=1   0,  2
  k=2   1, -1,   3
  k=3   0,  3,  -3,   4
  k=4   1, -2,   7,  -6,   5
  k=5   0,  4,  -8,  14, -10,   6
  k=6   1, -3,  13, -21,  25, -15,   7
  k=7   0,  5, -15,  35, -45,  41, -21,   8
  k=8   1, -4,  21, -49,  81, -85,  63, -28,   9
  ...
		

Crossrefs

Cf. A027642, A164555 (Numerators and denominators of Bernoulli numbers).
Cf. A001008, A002805 (Numerators and denominators of harmonic numbers).
Sequences below will be obtained by evaluation of the associated polynomials:

Programs

  • PARI
    A341091(n, k) = sum(m=n, k,(-1)^(m+n)*binomial(m+1, n))
    
  • PARI
    A341091(n, k) = (1/2)*(-1)^n*(2*(-1)^k*binomial(2+k, n)*hypergeom([1,k+3],k+3-n,-1)+(-1/2)^n*(2^(n+1)-1)) \\ Thomas Scheuerle, Apr 29 2024

Formula

b(0)*T(0, m) + b(1)*T(1, m) + ... + b(m)*T(m, m)
= Sum_{j=0..m} Sum_{n=0..m-j} Sum_{k=0..n} (-1)^k*binomial(n, k)*b(j+n-k)
= Sum_{n=0..m} b(n)*Sum_{j=n..m}(-1)^(j+n)*binomial(j+1, n).
T(n, k) = Sum_{m=n..k}(-1)^(m+n)*binomial(m+1, n).
T(n, k) = (1/2)*(-1)^n*(2*(-1)^k*binomial(2+k, n)*Hypergeometric2F1(1, k+3, k+3-n, -1)+(-1/2)^n*(2^(n+1) - 1)), where Hypergeometric2F1 is the Gaussian hypergeometric function 2F1 as defined in Mathematica. - Thomas Scheuerle, Apr 29 2024
T(k, k) = A000027(k+1) The positive integers.
|T(k-1, k)| = A000217(k) The triangular numbers.
T(k-2, k) = A004006(k).
|T(k-3, k)| = A051744(k).
T(0, k*2) = 1.
T(0, k*2 + 1) = 0.
T(1, k*2 + 1) = k + 2.
T(1, k*2 + 2) = -(k + 1).
T(n, k) with constant n and variable k, a linear recurrence relation with characteristic polynomial (x-1)*(x+1)^(n+1).
Sum_{n=0..k} T(n, k)*B_n = 1. B_n is the n-th Bernoulli number with B_1 = 1/2. B_n = A164555(n)/A027642(n).
Sum_{n=0..k} T(n, k)*(1 - B_n) = k.
Sum_{n=0..k} T(n, k)*(2*n - 3+3*B_n) = k^2.
Sum_{n=0..k} T(n, k)*A032346(n) = A032346(k+1).
From Thomas Scheuerle, Apr 29 2024: (Start)
Sum_{n=0..k} T(n, k)*A000110(n+1) = A000110(k+2) - 1.
Sum_{n=0..k} T(n, k)*(1/(1+n)) = H(1+floor(k/2)), where H(k) is the harmonic number A001008(k)/A002805(k). (End)
Sum_{n=0..k} T(n, k)*c(n) = c(k). C(k) = {-1, 0, 1/2, 1/2, 1/8, -7/20, ...} this sequence of rational numbers can be defined recursively: c(0) = -1, c(m) = (-c(m-1) + Sum_{k=0..m-1} A130595(m+1, k)*c(k))/m.
c(m) is an eigensequence of this transformation, all eigensequences are c(m) multiplied by any factor.
Sum_{n=0..k} T(n, k)*A000045(n) = 2*(A000045(2*floor((k+1)/2) - 1) - 1). A000045 are the Fibonacci numbers.
Sum_{n=0..k} T(n, k)*A000032(n) = A000032(2*floor(k/2)+2) - 2. A000032 are the Lucas numbers.
Sum_{n=0..k} T(n, k)*A001045(n) = A145766(floor((k+1)/2)). A001045 is the Jacobsthal sequence.
This sequence acting as an operator onto a monomial n^w:
Sum_{n=0..k} T(n, k)*n^w = (1/(w+1))*k^(w+1) + Sum_{v=1..w} ((v+B_v)*(w)_v/v!)*k^(w+1-v) - A052875(w) + O_k(w) (w)_v is the falling factorial. If k > w-1 then O_k(w) = 0. If k <= w-1 then O_k(w) is A084416(w, 2+k), the sequence with the exponential generating function: (e^x-1)^(2+k)/(2-e^x).
From Thomas Scheuerle, Apr 29 2024: (Start)
This sequence acting by its inverse operator onto a monomial k^w:
Sum_{n=0..k} T(n, k)*( Sum_{m=0..k} ((-1)^(1+m+k)*binomial(k, m)*(2^(k-m) - 1)*n^m + A344037(m)*B_n) ) = k^w - A372245(w, k+3), note that A372245(w, k+3) = 0 if k+3 > w. B_n is the n-th Bernoulli number with B_1 = 1/2.
How this sequence will act as an operator onto a Dirichlet series may be developed by the formulas below:
Sum_{n=0..k} T(n, k)*2^n = A000295(k+2).
Sum_{n=0..k} T(n, k)*3^n = A000392(k+3).
Sum_{n=0..k} T(n, k)*4^n = A016208(k).
Sum_{n=0..k} T(n, k)*5^n = A016218(k).
Sum_{n=0..k} T(n, k)*6^n = A016228(k).
Sum_{n=0..k} T(n, k)*7^n = A016241(k).
Sum_{n=0..k} T(n, k)*8^n = A016249(k).
Sum_{n=0..k} T(n, k)*9^n = A016256(k).
Sum_{n=0..k} T(n, k)*10^n = A016261(k).
Sum_{n=0..k} T(n, k)*m^n = m^2*m^k/(m-1) - (m-1)^2*(m-1)^k/(m-2) + 1/((m-1)*(m-2)), for m > 2.
Sum_{n=0..k} T(n, k)*( m*B_n + (m-1)*Sum_{t=1..m} t^n )*(1/m^2) = m^k, for m > 0. B_n is the n-th Bernoulli number with B_1 = 1/2.
Sum_{n=0..k} T(n, k) zeta(-n) = Sum_{j=0..k} (-1)^(1+j)/(2+j) = (-1)^(k+1)*LerchPhi(-1, 1, k+3) - 1 + log(2).
Sum_{n=0..k} T(k - n, k)*2^n = A000975(k+1)
Sum_{n=0..k} T(k - n, k)*3^n = A091002(k+2)
Sum_{n=0..k} T(k - n, k)*4^n = A249997(k). (End)
Showing 1-6 of 6 results.