A249993
Expansion of 1/((1+x)*(1+2*x)*(1-4*x)).
Original entry on oeis.org
1, 1, 11, 29, 147, 525, 2227, 8653, 35123, 139469, 559923, 2235597, 8950579, 35785933, 143176499, 572640461, 2290692915, 9162509517, 36650562355, 146601200845, 586406900531, 2345623407821, 9382502019891, 37529991302349, 150119998763827, 600479927946445
Offset: 0
Cf.
A109765 for g.f. 1/((1+x)*(1-2*x)*(1-4*x)).
-
[(2^(2*n+3) +(-1)^n*(5*2^(n+1)-3))/15: n in [0..40]]; // G. C. Greubel, Oct 10 2022
-
CoefficientList[Series[1/((1+x)(1+2x)(1-4x)),{x,0,30}],x] (* or *) LinearRecurrence[{1,10,8},{1,1,11},30] (* Harvey P. Dale, Dec 13 2018 *)
-
Vec(1/((1+x)*(1+2*x)*(1-4*x)) + O(x^40)) \\ Michel Marcus, Dec 28 2014
-
[(2^(2*n+3) +(-1)^n*(5*2^(n+1)-3))/15 for n in range(41)] # G. C. Greubel, Oct 10 2022
A249994
Expansion of 1/((1-2*x)*(1+3*x)*(1-4*x)).
Original entry on oeis.org
1, 3, 19, 63, 307, 1095, 4843, 18111, 76483, 294327, 1213147, 4747119, 19308979, 76282599, 308006731, 1223430687, 4919576995, 19600876311, 78636062395, 313847102415, 1257480899731, 5023648225863, 20113423216939, 80397210315903, 321758305696387, 1286524863041655
Offset: 0
Cf.
A016269 for the expansion of 1/((1-2*x)*(1-3*x)*(1-4*x)).
-
[(5*2^(2*n+3) -7*2^(n+1) +(-1)^n*3^(n+2))/35: n in [0..40]]; // G. C. Greubel, Oct 10 2022
-
LinearRecurrence[{3,10,-24}, {1,3,19}, 41] (* G. C. Greubel, Oct 10 2022 *)
-
Vec(1/((2*x-1)*(3*x+1)*(4*x-1)) + O(x^100)) \\ Colin Barker, Dec 29 2014
-
[(5*2^(2*n+3) -7*2^(n+1) +(-1)^n*3^(n+2))/35 for n in range(41)] # G. C. Greubel, Oct 10 2022
A249995
Expansion of 1/((1+2*x)*(1-3*x)*(1-4*x)).
Original entry on oeis.org
1, 5, 27, 121, 539, 2289, 9619, 39737, 162987, 663553, 2690051, 10865673, 43783195, 176086097, 707220723, 2837479129, 11375770763, 45580514721, 182554616035, 730915611305, 2925754935291, 11709295114225, 46856010770387, 187480525633401, 750091566966379, 3000874627609409
Offset: 0
Cf.
A016269 for the expansion of 1/((1-2*x)*(1-3*x)*(1-4*x)).
-
[(5*2^(2*n+3) +(-1)^n*2^(n+1) -3^(n+3))/15: n in [0..40]]; // G. C. Greubel, Oct 10 2022
-
LinearRecurrence[{5,2,-24}, {1,5,27}, 41] (* G. C. Greubel, Oct 10 2022 *)
CoefficientList[Series[1/((1+2x)(1-3x)(1-4x)),{x,0,40}],x] (* Harvey P. Dale, Oct 28 2022 *)
-
Vec(1/((1+2*x)*(1-3*x)*(1-4*x)) + O(x^50)) \\ Michel Marcus, Dec 29 2014
-
[(5*2^(2*n+3) +(-1)^n*2^(n+1) -3^(n+3))/15 for n in range(41)] # G. C. Greubel, Oct 10 2022
A249996
Expansion of 1/((1+2*x)*(1+3*x)*(1-4*x)).
Original entry on oeis.org
1, -1, 15, -5, 191, 99, 2455, 3515, 33231, 74899, 474695, 1371435, 7071871, 23520899, 108399735, 390617755, 1691480111, 6378762099, 26676785575, 103221406475, 423343881951, 1661998662499, 6742129440215, 26686105001595, 107591675061391, 427824901526099, 1718925069371655
Offset: 0
Cf.
A016269: expansion of 1/((1-2*x)*(1-3*x)*(1-4*x)).
-
[(2^(2*n+3) +(-1)^n*(3^(n+3) -7*2^(n+1)))/21: n in [0..40]]; // G. C. Greubel, Oct 11 2022
-
LinearRecurrence[{-1,14,24}, {1,-1,15}, 41] (* G. C. Greubel, Oct 11 2022 *)
-
Vec(1/((1+2*x)*(1+3*x)*(1-4*x)) + O(x^50)) \\ Michel Marcus, Dec 29 2014
-
[(2^(2*n+3) +(-1)^n*(3^(n+3) -7*2^(n+1)))/21 for n in range(41)] # G. C. Greubel, Oct 11 2022
Showing 1-4 of 4 results.