A091024 Let v(0) be the column vector (1,0,0,0)'; for n>0, let v(n) = [1 1 1 1 / 1 1 1 0 / 1 1 0 0/ 1 0 0 0] v(n-1). Sequence gives third entry of v(n).
0, 1, 2, 7, 19, 56, 160, 462, 1329, 3828, 11021, 31735, 91376, 263108, 757588, 2181389, 6281058, 18085587, 52075371, 149945056, 431749580, 1243173370, 3579575053, 10306975580, 29677753369, 85453685055, 246054079584
Offset: 0
Keywords
Examples
A006357, A076264, a(n) and A006357 (offset) gives the 4 components of v(n) transposed: 1 0 0 0 1 1 1 1 4 3 2 1 10 9 7 4 30 26 19 10 85 75 56 30
References
- Jay Kappraff, "Beyond Measure, A Guided Tour Through Nature, Myth and Number" (p. 497 gives the analogous case for the Heptagon).
Links
- Harvey P. Dale, Table of n, a(n) for n = 0..1000
- Index entries for linear recurrences with constant coefficients, signature (2,3,-1,-1).
Programs
-
Mathematica
a[n_] := (MatrixPower[{{1, 1, 1, 1}, {1, 1, 1, 0}, {1, 1, 0, 0}, {1, 0, 0, 0}}, n].{{1}, {0}, {0}, {0}})[[3, 1]]; Table[ a[n], {n, 0, 26}] (* Robert G. Wilson v, Feb 21 2005 *) LinearRecurrence[{2,3,-1,-1},{0,1,2,7},30] (* Harvey P. Dale, Feb 18 2016 *)
Formula
Recurrence: a(n) = 2*a(n-1) + 3*a(n-2) - a(n-3) - a(n-4), with initial conditions {a(k)}={0,1,2,7}, k=0,1,2,3. - L. Edson Jeffery, Mar 15 2011
G.f.: x/(1 - 2*x - 3*x^2 + x^3 + x^4). - L. Edson Jeffery, Mar 15 2011
G.f.: Q(0)*x/(2+2*x) , where Q(k) = 1 + 1/(1 - x*(12*k-3 + x^2)/( x*(12*k+3 + x^2 ) - 1/Q(k+1) )); (continued fraction). - Sergei N. Gladkovskii, Sep 12 2013
Extensions
More terms from Robert G. Wilson v, Feb 21 2005
Comments