A091079 Numbers n which when converted to base 5, reversed and converted back to base 10 yield a number m such that n mod m = 0. Cases which are trivial or result in digit loss are excluded.
16, 96, 416, 496, 576, 2016, 2496, 2976, 10016, 10416, 12096, 12496, 14976, 50016, 52416, 60096, 62496, 74976, 250016, 252016, 260416, 262416, 300096, 302096, 310496, 312496, 360576, 374976, 1250016, 1262016, 1300416, 1312416, 1500096, 1512096, 1550496
Offset: 1
Examples
a(1) = 16 because: 16 in base 5 is 31; 31 reversed is 13; 13 converted back to base 10 is 8 and 16 mod 8 = 0.
Links
- Robert Israel, Table of n, a(n) for n = 1..10000
- C. Seggelin, Numbers Divisible by Digit Permutations. [Broken link?]
Crossrefs
Programs
-
Maple
F:= proc(d) local eq,m,R; R:= NULL; for m in [2,4] do eq:= m*add(a[i]*5^i,i=0..d)-add(a[d-i]*5^i,i=0..d); R:= R, F1(eq,[],d); od; sort([R]); end proc: F1:= proc(eq,A,d) local V,s,e1,i1,i2,vlo,R,v1,v2,Vp,Vm,emax,emin; V:= indets(eq); if nops(V) = 0 then if eq = 0 then subs(A,add(a[d-i]*5^i,i=0..d)) else NULL fi elif nops(V) = 1 then s:= solve(eq,V[1]); if member(s,[$0..4]) then subs([op(A),V[1]=s],add(a[d-i]*5^i,i=0..d)); fi else Vp,Vm:= selectremove(t -> coeff(eq,t)>0, V); emax:= subs(map(`=`,Vp,4),map(`=`,Vm,0),eq); if emax < 0 then return NULL fi; emin:= subs(map(`=`,Vp,0),map(`=`,Vm,4),eq); if emin > 0 then return NULL fi; e1:= eq mod 5; V:= indets(e1); if nops(V) = 0 then procname(e1/5,A,d) elif nops(V) = 1 then s:= msolve(e1, 5); procname(subs(s,eq)/5, [op(A),op(s)], d) else i1:= op(1,V[1]); i2:= op(1,V[2]); if i1 = 0 or i2 = 0 then vlo:= 1 else vlo:= 0 fi; R:= NULL; for v1 from vlo to 4 do s:= msolve(eval(e1, a[i1]=v1),5); R:= R, procname(subs(a[i1]=v1, op(s), eq)/5, [op(A),a[i1]=v1,op(s)],d) od; R fi fi end proc: seq(op(F(d)),d=1..8); # Robert Israel, Apr 22 2021
-
PARI
/* See A091077 and use PARI script with b=5 */
Extensions
More terms from Michel Marcus, Oct 10 2014
Comments