A091077 Numbers n which when converted to base 3, reversed and converted back to base 10 yield a number m such that n mod m = 0. Cases which are trivial or result in digit loss are excluded.
64, 208, 640, 1936, 5248, 5824, 15616, 17488, 46720, 50752, 52480, 140032, 151840, 157456, 419968, 425152, 455104, 467200, 472384, 1259776, 1276624, 1364896, 1400320, 1417168, 3779200, 3794752, 3831040, 4094272, 4109824, 4199680, 4235968, 4251520
Offset: 1
Examples
a(1) = 64 because: 64 in base 3 is 2101; 2101 reversed is 1012; 1012 converted back to base 10 is 32 and 64 mod 32 = 0.
Links
- C. Seggelin, Numbers Divisible by Digit Permutations. [Broken link]
Crossrefs
Programs
-
PARI
isok(n, b=3) = {m = subst(Polrev(digits(n, b)), x, b); if (n % m, return(0));if ((n/m == 1), return (0)); vq = valuation(n, b); if (! vq, return (1)); qq = subst(Polrev(digits(m,b)), x, b); if (n == b^vq*qq, return (0)); return (1);} \\ Michel Marcus, Oct 10 2014
Extensions
More terms from Michel Marcus, Oct 10 2014
Comments