cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-1 of 1 results.

A091079 Numbers n which when converted to base 5, reversed and converted back to base 10 yield a number m such that n mod m = 0. Cases which are trivial or result in digit loss are excluded.

Original entry on oeis.org

16, 96, 416, 496, 576, 2016, 2496, 2976, 10016, 10416, 12096, 12496, 14976, 50016, 52416, 60096, 62496, 74976, 250016, 252016, 260416, 262416, 300096, 302096, 310496, 312496, 360576, 374976, 1250016, 1262016, 1300416, 1312416, 1500096, 1512096, 1550496
Offset: 1

Views

Author

Chuck Seggelin, Dec 18 2003

Keywords

Comments

Trivial cases are those numbers which upon conversion result in a number which is palindromic (m = reverse(m)), or a palindrome plus trailing zeros such that m = reverse(m)*10^z where z=number of lost zeros. Nontrivial digit loss occurs when a converted number has trailing zeros that drop off when the number is reversed.
n/m must be either 2 or 4. - Robert Israel, Apr 22 2021

Examples

			a(1) = 16 because: 16 in base 5 is 31; 31 reversed is 13; 13 converted back to base 10 is 8 and 16 mod 8 = 0.
		

Crossrefs

Cf. A091077 (same in base 3), A091078 (base 4), A091080 (base 6), A091081 (base 7), A091082 (base 8), A091083 (base 9), A031877 (base 10).
See also A222816, A214927.

Programs

  • Maple
    F:= proc(d) local eq,m,R;
      R:= NULL;
      for m in [2,4] do
        eq:= m*add(a[i]*5^i,i=0..d)-add(a[d-i]*5^i,i=0..d);
        R:= R, F1(eq,[],d);
      od;
    sort([R]);
    end proc:
    F1:= proc(eq,A,d) local V,s,e1,i1,i2,vlo,R,v1,v2,Vp,Vm,emax,emin;
          V:= indets(eq);
          if nops(V) = 0 then
             if eq = 0 then subs(A,add(a[d-i]*5^i,i=0..d))
             else NULL
             fi
          elif nops(V) = 1 then
             s:= solve(eq,V[1]);
             if member(s,[$0..4]) then
                subs([op(A),V[1]=s],add(a[d-i]*5^i,i=0..d));
             fi
          else
              Vp,Vm:= selectremove(t -> coeff(eq,t)>0, V);
             emax:= subs(map(`=`,Vp,4),map(`=`,Vm,0),eq);
             if emax < 0 then return NULL fi;
             emin:= subs(map(`=`,Vp,0),map(`=`,Vm,4),eq);
             if emin > 0 then return NULL fi;
               e1:= eq mod 5;
             V:= indets(e1);
             if nops(V) = 0 then procname(e1/5,A,d)
             elif nops(V) = 1 then
               s:= msolve(e1, 5);
               procname(subs(s,eq)/5, [op(A),op(s)], d)
             else
               i1:= op(1,V[1]); i2:= op(1,V[2]);
               if i1 = 0 or i2 = 0 then vlo:= 1 else vlo:= 0 fi;
               R:= NULL;
               for v1 from vlo to 4 do
                 s:= msolve(eval(e1, a[i1]=v1),5);
                 R:= R, procname(subs(a[i1]=v1, op(s), eq)/5, [op(A),a[i1]=v1,op(s)],d)
               od;
               R
          fi fi
    end proc:
    seq(op(F(d)),d=1..8); # Robert Israel, Apr 22 2021
  • PARI
    /* See A091077 and use PARI script with b=5 */

Extensions

More terms from Michel Marcus, Oct 10 2014
Showing 1-1 of 1 results.