cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-6 of 6 results.

A091160 Number of orbits of length n under the map whose periodic points are counted by A061687.

Original entry on oeis.org

1, 16, 2835, 2370752, 6611343125, 48887897438124, 821067869874486556, 28006755051982013513984, 1782755223314276717178818904, 198173677662343700104263938337400, 36467946245662764068249155883368682252, 10631160782054640951386529213624176084501136
Offset: 1

Views

Author

Thomas Ward, Feb 24 2004

Keywords

Comments

Old name was: A061687 appears to count the periodic points for a certain map. If so, then this is the sequence of the numbers of orbits of length n for that map.

Examples

			b(1)=1, b(3)=8506, so a(3) = (1/3)*(8506-1) = 2835.
		

Crossrefs

Cf. A061687.

Programs

  • Maple
    with(numtheory):
    b:= proc(n) option remember;
          `if`(n=0, 1, add(binomial(n, k)^6*(n-k)*b(k)/n, k=0..n-1))
        end:
    a:= n-> add(mobius(d)*b(n/d), d=divisors(n))/n:
    seq(a(n), n=1..15);  # Alois P. Heinz, Mar 19 2014
  • Mathematica
    b[n_] := b[n] = If[n==0, 1, Sum[Binomial[n, k]^6 (n-k)b[k]/n, {k, 0, n-1}]];
    a[n_] := Sum[MoebiusMu[d] b[n/d], {d, Divisors[n]}]/n;
    Array[a, 15] (* Jean-François Alcover, Nov 18 2020, after Alois P. Heinz *)

Formula

If b(n) is the (n+1)th term of A061687, then a(n) = (1/n)*Sum_{d|n} mu(d)*b(n/d).

Extensions

More terms from Alois P. Heinz, Mar 19 2014
Name clarified by Michel Marcus, May 13 2015

A091266 Number of orbits of length n under the map whose periodic points are counted by A061694.

Original entry on oeis.org

0, 0, 12, 216, 3500, 58494, 1028167, 18954072, 363991752, 7231521650, 147777013109, 3091874792274, 65993049570175, 1432803420182428, 31570847522072400, 704668366087255200, 15907964778448807820
Offset: 1

Views

Author

Thomas Ward, Feb 24 2004

Keywords

Comments

Old name was: A061694 appears to count the periodic points for a certain map. If so, then this is the sequence of the numbers of orbits of length n under that map.

Examples

			b(1)=0, b(3)=36 so a(3)=12.
		

Crossrefs

Cf. A061694.

Programs

  • Mathematica
    Table[Sum[MoebiusMu[d] * Sum[Sum[((n/d)!/(i!*j!*(n/d - i - j)!))^3/6, {i, 1, n/d - j - 1}], {j, 1, n/d}], {d, Divisors[n]}]/n, {n, 1, 20}] (* Vaclav Kotesovec, Sep 05 2019 *)

Formula

If b(n) is the n-th term of A061694, then a(n) = (1/n)*Sum_{d|n}mu(d)b(n/d).
a(n) ~ 3^(3*n + 1) / (8 * Pi^2 * n^3). - Vaclav Kotesovec, Sep 05 2019

Extensions

Name clarified by Michel Marcus, May 14 2015

A091201 Number of orbits of length n under the map whose periodic points are counted by A061688.

Original entry on oeis.org

1, 32, 16281, 52293792, 692825815625, 28927809504181734
Offset: 1

Views

Author

Thomas Ward, Feb 24 2004

Keywords

Comments

Old name was: A061688 appears to count the periodic points for a certain map. If so, then this is the sequence of the numbers of orbits of length n under that map.

Examples

			b(1)=1,b(3)=48844, so a(3)=(1/3)(48844-1)=16281.
		

Crossrefs

Cf. A061688.

Formula

If b(n) is the (n+1)th term of A061688, then a(n) = (1/n)*Sum_{d|n}mu(d)b(n/d).

Extensions

Name clarified by Michel Marcus, May 14 2015

A091268 Number of orbits of length n under the map whose periodic points are counted by A061685.

Original entry on oeis.org

1, 4, 99, 6272, 876725, 232419936, 105471170140, 76095730062464, 82555139387847312, 128928209221144677400, 279860608037771819829980, 820360089598849358326307904, 3169977309466844379463315722484
Offset: 1

Views

Author

Thomas Ward, Feb 24 2004

Keywords

Comments

Old name was: A061685 appears to count the periodic points for a certain map. If so, then this is the sequence of the numbers of orbits of length n for that map.

Examples

			b(1)=1, b(2)=9, b(3)=298. Hence a(3)=(1/3)(b(3)-b(1))=99.
		

Crossrefs

Cf. A061685.

Formula

If b(n) is the (n+1)th term of A061685, then a(n) = (1/n)*Sum_{d|n}mu(d)b(n/d).

Extensions

Name clarified by Michel Marcus, May 14 2015

A091315 Number of orbits of length n under the map whose periodic points are counted by A061684.

Original entry on oeis.org

1, 2, 21, 402, 13805, 761154, 62523664, 7237970648, 1132600004910, 231900134422880, 60528794385067778, 19713593779259862624, 7869483395065035685162, 3792402572391137423764584
Offset: 1

Views

Author

Thomas Ward, Feb 24 2004

Keywords

Comments

Old name was: A061684 appears to count the periodic points for a certain map. If so, then this is the sequence of the numbers of orbits of length n.

Examples

			The sequence A061684 begins 1,1,5,64,1613, so a(3)=(b(3)-b(1))/3=21.
		

Crossrefs

Cf. A061684.

Formula

If b(n) is the (n+1)th term in A061684, then a(n) = (1/n)*Sum_{d|n}mu(d)b(n/d).

Extensions

Name clarified by Michel Marcus, May 14 2015

A092239 Number of orbits of length n under the map whose periodic points are counted by A061693.

Original entry on oeis.org

0, 2, 9, 42, 225, 1260, 7497, 46176, 293382, 1908150, 12655269, 85287870, 582628683, 4026368514, 28104231825, 197884340160, 1404038987577, 10029929788566, 72086075552493, 520920674929650
Offset: 1

Views

Author

Thomas Ward, Feb 24 2004

Keywords

Comments

Old name was: A061693 appears to count the periodic points for a certain map. If so, then this is the sequence of the numbers of orbits of length n.

Examples

			a(3)=9 since a(3)=(1/3)(b(3)-b(1)) where b is the sequence A061693, which starts 0,4,27.
		

Crossrefs

Cf. A061693.

Programs

  • Mathematica
    Table[Sum[MoebiusMu[d] * (Sum[Binomial[n/d, k]^3, {k, 0, n/d}]/2 - 1), {d, Divisors[n]}]/n, {n, 1, 20}] (* Vaclav Kotesovec, Sep 05 2019 *)

Formula

If b(n) is the n-th term of A061693, then a(n) = (1/n)*Sum_{d|n}mu(d)a(n/d).
a(n) ~ 8^n / (Pi*sqrt(3)*n^2). - Vaclav Kotesovec, Sep 05 2019

Extensions

Name clarified by Michel Marcus, May 14 2015
Showing 1-6 of 6 results.