A091156 Triangle read by rows: T(n,k) is the number of Dyck paths of semilength n, having k long ascents (i.e., ascents of length at least 2). Rows are of length 1,1,2,2,3,3,... .
1, 1, 1, 1, 1, 4, 1, 11, 2, 1, 26, 15, 1, 57, 69, 5, 1, 120, 252, 56, 1, 247, 804, 364, 14, 1, 502, 2349, 1800, 210, 1, 1013, 6455, 7515, 1770, 42, 1, 2036, 16962, 27940, 11055, 792, 1, 4083, 43086, 95458, 57035, 8217, 132, 1, 8178, 106587, 305812, 257257
Offset: 0
Examples
T(4,1) = 11 because among the 14 Dyck paths of semilength 4, the paths that do not have exactly one long ascent are UDUDUDUD (no long ascent), UUDDUUDD (two long ascents) and UUDUUDDD (two long ascents). Here U=(1,1) and D=(1,-1). Triangle begins: 1; 1; 1, 1; 1, 4; 1, 11, 2; 1, 26, 15; 1, 57, 69, 5; 1, 120, 252, 56; 1, 247, 804, 364, 14; 1, 502, 2349, 1800, 210; 1, 1013, 6455, 7515, 1770, 42; ...
References
- R. P. Stanley, Enumerative Combinatorics, Vol. 1, 1986; See Exercise 3.71(f).
Links
- Alois P. Heinz, Rows n = 0..200, flattened
- M. Barnabei et al., The descent statistic over 123-avoiding permutations, arXiv:0910.0963 [math.CO], 2009.
- A. M. Baxter, Algorithms for Permutation Statistics, Ph. D. Dissertation, Rutgers University, May 2011. See p. 88.
- Michael Bukata, Ryan Kulwicki, Nicholas Lewandowski, Lara Pudwell, Jacob Roth, Teresa Wheeland, Distributions of Statistics over Pattern-Avoiding Permutations, arXiv:1812.07112 [math.CO], 2018.
- Colin Defant, Stack-Sorting Preimages of Permutation Classes, arXiv:1809.03123 [math.CO], 2018.
- Katie R. Gedeon, Kazhdan-Lusztig polynomials of thagomizer matroids, arXiv:1610.05349 [math.CO], 2016.
- Y. Park, S. Park, Avoiding permutations and the Narayana numbers, J. Korean Math. Soc. 50 (2013), No. 3, pp. 529-541.
- Lara Pudwell, On the distribution of peaks (and other statistics), 16th International Conference on Permutation Patterns, Dartmouth College, 2018.
- A. Sapounakis, I. Tasoulas and P. Tsikouras, Counting strings in Dyck paths, Discrete Math., 307 (2007), 2909-2924.
- Chao-Jen Wang, Applications of the Goulden-Jackson cluster method to counting Dyck paths by occurrences of subwords.
- Philip B. Zhang and Sergey Kitaev, Descent generating polynomials for (n-3)- and (n-4)-stack-sortable (pattern-avoiding) permutations, Discrete Applied Mathematics, Volume 372, 2025, Pages 1-14.
- Index entries for sequences related to Łukasiewicz
Programs
-
Maple
a := (n,k)->binomial(n+1,k)* add(binomial(k+j-1,k-1)*binomial(n+1-k, n-2*k-j), j=0..n-2*k)/(n+1); seq(seq(a(n,k), k=0..floor(n/2)),n=0..15); seq(seq(simplify(n!*(1+k)/((n-2*k)!*(1+k)!^2)*hypergeom([k,2*k-n],[k+2],-1)),k=0.. floor(n/2)),n=0..15); # Peter Luschny, Oct 16 2015 # alternative Maple program: b:= proc(x, y) option remember; `if`(y>x or y<0, 0, `if`(x=0, 1, expand(b(x-1, y)*`if`(y=0, 1, 2)*z+ b(x-1, y+1) +b(x-1, y-1)))) end: T:= n-> (p-> seq(coeff(p, z, n-2*i), i=0..n/2))(b(n, 0)): seq(T(n), n=0..15); # Alois P. Heinz, Aug 07 2018
-
Mathematica
T[n_, k_] := Binomial[n+1, k]*Sum[Binomial[k+j-1, k-1]*Binomial[n+1-k, n- 2*k-j], {j, 0, n-2*k}]/(n+1); Table[T[n, k], {n, 0, 15}, {k, 0, Floor[n/2 ]}] // Flatten (* Jean-François Alcover, Jan 31 2016 *)
-
PARI
tabf(nn) = {for(n=-1, nn, for(k=0, floor(n/2), if(binomial(n+1,k) * sum(j=0, n-2*k, binomial(k+j-1,k-1) * binomial(n+1-k,n-2*k-j))/(n+1)==0,print1("1, "), print1(binomial(n+1,k) * sum(j=0, n-2*k, binomial(k+j-1,k-1) * binomial(n+1-k,n-2*k-j))/(n+1),", "));); print();); }; tabf(16); \\ Indranil Ghosh, Mar 05 2017
Formula
T(n,k) = (1/(n+1)) * binomial(n+1, k) * Sum_{j=0..n-2k} binomial(k+j-1, k-1)*binomial(n+1-k, n-2k-j).
G.f. G(t, z) satisfies z*(1-z+t*z)*G^2 - G + 1 = 0.
T(n,k) = n!*(1+k)/((n-2*k)!*(1+k)!^2)*hypergeom([k,2*k-n], [k+2], -1). - Peter Luschny, Oct 16 2015
T(n,k) = A055151(n,k)*hypergeom([k,2*k-n],[k+2],-1). - Peter Luschny, Oct 16 2015
Extensions
Edited by Andrew Baxter, May 17 2011
Comments