A091191 Primitive abundant numbers: abundant numbers (A005101) having no abundant proper divisor.
12, 18, 20, 30, 42, 56, 66, 70, 78, 88, 102, 104, 114, 138, 174, 186, 196, 222, 246, 258, 272, 282, 304, 308, 318, 354, 364, 366, 368, 402, 426, 438, 464, 474, 476, 498, 532, 534, 550, 572, 582, 606, 618, 642, 644, 650, 654, 678, 748, 762, 786, 812, 822
Offset: 1
Keywords
Examples
12 is a term since 1, 2, 3, 4, and 6 (the proper divisors of 12) are either deficient or perfect numbers, and thus not abundant. - _Timothy L. Tiffin_, Jul 15 2016
Links
- T. D. Noe, Table of n, a(n) for n = 1..10000
- P. Erdős, On the density of the abundant numbers, J. London Math. Soc. 9 (1934), pp. 278-282.
- Eric Weisstein's World of Mathematics, Abundant Number
Crossrefs
Programs
-
Haskell
a091191 n = a091191_list !! (n-1) a091191_list = filter f [1..] where f x = sum pdivs > x && all (<= 0) (map (\d -> a000203 d - 2 * d) pdivs) where pdivs = a027751_row x -- Reinhard Zumkeller, Jan 31 2014
-
Maple
isA005101 := proc(n) is(numtheory[sigma](n) > 2*n ); end proc: isA091191 := proc(n) local d; if isA005101(n) then for d in numtheory[divisors](n) minus {1,n} do if isA005101(d) then return false; end if; end do: return true; else false; end if; end proc: for n from 1 to 200 do if isA091191(n) then printf("%d\n",n) ; end if;end do: # R. J. Mathar, Mar 28 2011
-
Mathematica
t = {}; n = 1; While[Length[t] < 100, n++; If[DivisorSigma[1, n] > 2*n && Intersection[t, Divisors[n]] == {}, AppendTo[t, n]]]; t (* T. D. Noe, Mar 28 2011 *) Select[Range@ 840, DivisorSigma[1, #] > 2 # && Times @@ Boole@ Map[DivisorSigma[1, #] <= 2 # &, Most@ Divisors@ #] == 1 &] (* Michael De Vlieger, Jul 16 2016 *)
-
PARI
is(n)=sumdiv(n,d,sigma(d,-1)>2)==1 \\ Charles R Greathouse IV, Dec 05 2012
Formula
Erdős shows that a(n) >> n log^2 n. - Charles R Greathouse IV, Dec 05 2012
Comments