cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A091222 Number of irreducible polynomials dividing n-th GF(2)[X]-polynomial, counted with multiplicity.

Original entry on oeis.org

0, 1, 1, 2, 2, 2, 1, 3, 2, 3, 1, 3, 1, 2, 3, 4, 4, 3, 1, 4, 2, 2, 2, 4, 1, 2, 3, 3, 2, 4, 1, 5, 2, 5, 2, 4, 1, 2, 3, 5, 1, 3, 2, 3, 4, 3, 1, 5, 2, 2, 5, 3, 2, 4, 1, 4, 3, 3, 1, 5, 1, 2, 3, 6, 4, 3, 1, 6, 2, 3, 2, 5, 1, 2, 4, 3, 2, 4, 2, 6, 2, 2, 3, 4, 6, 3, 1, 4, 2, 5, 1, 4, 2, 2, 3, 6, 1, 3, 3, 3, 3, 6
Offset: 1

Views

Author

Antti Karttunen, Jan 03 2004

Keywords

Crossrefs

Programs

  • Maple
    for n from 1 to 1000 do
      L:= convert(n,base,2);
      P:= add(L[i]*X^(i-1),i=1..nops(L));
      R:= Factors(P) mod 2;
      a[n]:= add(r[2],r=R[2]);
    od:
    seq(a[n],n=1..1000); # Robert Israel, Jun 07 2015
  • PARI
    a(n)=my(fm=factor(Pol(binary(n))*Mod(1, 2))); sum(k=1, #fm~, fm[k, 2]) \\ Franklin T. Adams-Watters, Jun 07 2015

Formula

a(n) = A001222(A091203(n)) = A001222(A091205(n)).
a(A000051(n)) = A091248(n).

A318622 Number of irreducible factors in the factorization of the n-th cyclotomic polynomial over GF(2) (counted with multiplicity).

Original entry on oeis.org

1, 1, 1, 2, 1, 1, 2, 4, 1, 1, 1, 2, 1, 2, 2, 8, 2, 1, 1, 2, 2, 1, 2, 4, 1, 1, 1, 4, 1, 2, 6, 16, 2, 2, 2, 2, 1, 1, 2, 4, 2, 2, 3, 2, 2, 2, 2, 8, 2, 1, 4, 2, 1, 1, 2, 8, 2, 1, 1, 4, 1, 6, 6, 32, 4, 2, 1, 4, 2, 2, 2, 4, 8, 1, 2, 2, 2, 2, 2, 8, 1, 2, 1, 4, 8, 3, 2, 4, 8, 2, 6, 4, 6, 2, 2, 16, 2, 2
Offset: 1

Views

Author

Robert Israel, Aug 30 2018

Keywords

Comments

From Jianing Song, Sep 13 2022: (Start)
a(n) is also the number of irreducible factors in the factorization of the ideal (2) in Z[zeta_n], zeta_n = exp(2*Pi*i/n). Actually, if the n-th cyclotomic polynomial factors as Product_{i=1..a(n)} F_i(x) over GF(2), then the factorization of (2) in Z[zeta_m] is (p) = Product_{i=1..T(n,m)} (2,F_i(zeta_m)). See Page 47-48, Proposition 8.3 and Page 61-62, Proposition 10.3 of the Neukirch link for a proof; see also A327818.
As a result, 2 remains inert in Q(zeta_n) <=> a(n) = 1, which happens if and only if either n is odd, 2 is a primitive root modulo n, or n == 2 (mod 4), 2 is a primitive root modulo n/2.
Example 1: Phi_8(x) = x^4+1 == (x+1)^4 (mod 2), so in Z[zeta_8] = Z[i,sqrt(2)] we have (2) = (2,(zeta_8)+1)^4 = ((zeta_8)+1)^4. In fact we have 2 = -i*(3-2*sqrt(2)) * ((zeta_8)+1)^4.
Example 2: Phi_12(x) = x^4-x^2+1 == (x^2+x+1)^2 (mod 2), so in Z[zeta_12] = Z[i,sqrt(3)] we have (2) = (2,(zeta_12)^2+(zeta_12)+1)^2 = ((zeta_12)^2+(zeta_12)+1)^2. In fact we have 2 = (2-sqrt(3)) * (1-sqrt(-3))/2 * ((zeta_12)^2+(zeta_12)+1)^2. (End)

Crossrefs

Row 1 of A327818.

Programs

  • Maple
    f:= proc(n) option remember;  numtheory:-phi(n)/numtheory:-order(2, n/2^padic:-ordp(n, 2)) end proc:
    map(f, [$1..200]);
  • Mathematica
    a[n_] := EulerPhi[n]/MultiplicativeOrder[2, n/2^IntegerExponent[n, 2]]; Array[a, 100] (* Jean-François Alcover, Apr 27 2019 *)
  • PARI
    a(n) = eulerphi(n)/znorder(Mod(2, (n >> valuation(n, 2)))); \\ Michel Marcus, Apr 27 2019

Formula

a(n) = A000010(n)/A002326((A000265(n)-1)/2).
A091248(n) = Sum_{d|n} a(d).
Showing 1-2 of 2 results.