cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A348193 (Number of primes == 3 mod 4 less than n^2) - (number of primes == 1 mod 4 less than n^2).

Original entry on oeis.org

0, 1, 1, 1, 2, 2, 2, 1, 3, 2, 1, 3, 4, 3, 5, 5, 4, 3, 3, 3, 2, 3, 6, 6, 5, 5, 6, 4, 5, 5, 5, 5, 6, 4, 3, 3, 4, 3, 7, 12, 10, 7, 10, 8, 9, 10, 10, 7, 6, 6, 9, 8, 6, 6, 9, 6, 4, 9, 6, 8, 8, 7, 12, 11, 11, 9, 8, 9, 12, 9, 12, 17, 12, 13, 16, 12, 16, 18, 16, 15, 12, 12, 11, 17, 18, 14, 11, 13, 9, 5, 7, 7, 6, 7, 8, 7, 6, 8, 7, 10
Offset: 1

Views

Author

Seiichi Manyama, Oct 06 2021

Keywords

Comments

a(790) = -1.

Crossrefs

Programs

  • PARI
    a(n) = sum(k=2, n^2-1, (isprime(k)&&k%4==3)-(isprime(k)&&k%4==1));

Formula

a(n) = A348195(n) - A348196(n).

A093153 Difference between counts of odd composites in A093151 and A093152 [Count (1 mod 4) - count (3 mod 4)].

Original entry on oeis.org

0, 1, 6, 9, 24, 146, 217, 445, 550, 5959, 14251, 63336, 118471, 183456, 951699, 3458333, 6284059, 2581690, 80743227, 259753424
Offset: 1

Views

Author

Enoch Haga, Mar 24 2004

Keywords

Comments

In A091295 the counts are 1 higher. I computed the differences through 10^8 and the rest by extrapolating from A091098 and A091099. In the ranges given, the counts of odd composites less than 10^n are higher 1 mod 4 than 3 mod 4. They are exactly opposite for the primes less than 10^n where 3 mod 4 is higher.

Examples

			Below 10^3 there are 169 odd composites 1 mod 4 and 163 odd composites 3 mod 4, so a(3)=169-163=6
		

Crossrefs

Formula

Subtract count of odd composites 3 mod 4 less than 10^n from those 1 mod 4
a(n) = A093151(n) - A093152(n). For n>1, a(n) = A091099(n) - A091098(n) - 1. [From Max Alekseyev, May 17 2009]

Extensions

More terms from Max Alekseyev, May 17 2009

A093151 Number of odd composites 1 mod 4 less than 10^n.

Original entry on oeis.org

1, 13, 169, 1890, 20216, 210824, 2167819, 22119495, 224576508, 2272476724, 22940979719, 231196075659, 2326967290816, 23397529216327, 235077715264515, 2360380831212204, 23688221424314913, 237630022857420415, 2382971166402199310, 23889590198849417292
Offset: 1

Views

Author

Enoch Haga, Mar 24 2004

Keywords

Examples

			Below 10^2 there are 13 odd composites so a(2)=13
		

Crossrefs

Formula

Count odd composites 1 mod 4 less than 10^n
For n>1, a(n) = 25*10^(n-2) - 1 - A091098(n). - Max Alekseyev, May 30 2007

Extensions

More terms from Max Alekseyev, May 30 2007
Extended by Max Alekseyev, Oct 13 2009

A093152 Number of odd composites below 10^n that are congruent to 3 modulo 4.

Original entry on oeis.org

0, 12, 163, 1881, 20192, 210678, 2167602, 22119050, 224575958, 2272470765, 22940965468, 231196012323, 2326967172345, 23397529032871, 235077714312816, 2360380827753871, 23688221418030854, 237630022854838725, 2382971166321456083, 23889590198589663868
Offset: 1

Views

Author

Enoch Haga, Mar 24 2004

Keywords

Examples

			Below 10^2 there are 12 odd composites 3 mod 4 so a(2)=12
		

Crossrefs

Formula

For n>1, a(n) = 25*10^(n-2) - A091099(n) [From Max Alekseyev, May 17 2009]

Extensions

a(9) from Ryan Propper, Jun 21 2005
a(10)-a(20) from Max Alekseyev, May 17 2009, Oct 08 2013

A348194 a(n) = A077767(n) - A077766(n).

Original entry on oeis.org

1, 0, 0, 1, 0, 0, -1, 2, -1, -1, 2, 1, -1, 2, 0, -1, -1, 0, 0, -1, 1, 3, 0, -1, 0, 1, -2, 1, 0, 0, 0, 1, -2, -1, 0, 1, -1, 4, 5, -2, -3, 3, -2, 1, 1, 0, -3, -1, 0, 3, -1, -2, 0, 3, -3, -2, 5, -3, 2, 0, -1, 5, -1, 0, -2, -1, 1, 3, -3, 3, 5, -5, 1, 3, -4, 4, 2, -2, -1, -3, 0, -1, 6, 1, -4, -3, 2, -4, -4, 2, 0, -1, 1, 1, -1, -1, 2, -1, 3, 1, 2, -2, 5, 1, -1
Offset: 1

Views

Author

Seiichi Manyama, Oct 06 2021

Keywords

Crossrefs

Programs

  • PARI
    a(n) = sum(k=n^2, (n+1)^2, (isprime(k)&&k%4==3)-(isprime(k)&&k%4==1));

Formula

a(n) = A348193(n+1) - A348193(n).
Showing 1-5 of 5 results.