A091304 a(n) = Omega(2n-1) (number of prime factors of the n-th odd number, counted with multiplicity).
0, 1, 1, 1, 2, 1, 1, 2, 1, 1, 2, 1, 2, 3, 1, 1, 2, 2, 1, 2, 1, 1, 3, 1, 2, 2, 1, 2, 2, 1, 1, 3, 2, 1, 2, 1, 1, 3, 2, 1, 4, 1, 2, 2, 1, 2, 2, 2, 1, 3, 1, 1, 3, 1, 1, 2, 1, 2, 3, 2, 2, 2, 3, 1, 2, 1, 2, 4, 1, 1, 2, 2, 2, 3, 1, 1, 3, 2, 1, 2, 2, 1, 3, 1, 2, 3, 1, 3, 2, 1, 1, 2, 2, 2, 4, 1, 1, 3, 1, 1, 2, 2, 2, 3, 2
Offset: 1
Examples
Omega(1) = 0, Omega(9) = 2 (3 * 3 = 9), Omega (243) = 5 (3 * 3 * 3 * 3 * 3 = 243), Omega(51) = 2 (3 * 17 = 51). For n = 92, A001222(2*92 - 1) = A001222(183) = 2 as 183 = 3*61, thus a(92) = 2. - _Antti Karttunen_, May 31 2017
Links
- Antti Karttunen, Table of n, a(n) for n = 1..10000
Crossrefs
Programs
-
Mathematica
a[n_] := PrimeOmega[2*n - 1]; Array[a, 100] (* Amiram Eldar, Jul 23 2023 *)
-
PARI
a(n) = bigomega(2*n-1) \\ Michel Marcus, Jul 26 2013, edited to reflect the changed starting offset by Antti Karttunen, May 31 2017
Formula
a(n) = Omega(2n-1). [Odd bisection of A001222.]
From Antti Karttunen, May 31 2017: (Start)
For n >= 2, a(n) = 1+A285716(n).
(End)
Extensions
Starting offset changed to 1 and the definition modified respectively. Also values of the initial term and of term a(92) (= 2, previously a(91) = 1) corrected by Antti Karttunen, May 31 2017
Comments