A091305 Primes of the form p*q - p - q, where p and q are primes.
3, 5, 7, 11, 17, 19, 23, 29, 31, 41, 43, 47, 59, 71, 79, 83, 101, 103, 107, 131, 137, 139, 149, 163, 167, 179, 191, 197, 199, 211, 223, 227, 239, 251, 263, 269, 271, 281, 311, 331, 347, 359, 379, 383, 419, 431, 443, 461, 463, 467, 479, 491, 499, 503, 521, 523
Offset: 1
Examples
31 is a member with p=3, q=17.
Links
- T. D. Noe, Table of n, a(n) for n=1..1000
Programs
-
Maple
N:= 1000: # for terms <= N P:= select(isprime, [2,seq(i,i=3..N/2,2)]): S:= {}: for i from 1 to nops(P) do for j from 1 to i do x:= P[i]*P[j]-P[i]-P[j]; if x > N then break fi; if isprime(x) then S:= S union {x} fi od od: sort(convert(S,list)); # Robert Israel, Jun 05 2025
-
Mathematica
mp[{p_,q_}]:=p*q-p-q; Take[Union[Select[mp/@Subsets[Prime[Range[100]],{2}], PrimeQ]],60] (* Harvey P. Dale, Nov 27 2011 *)
-
PARI
isA091305(p)=fordiv(p++,d,if(isprime(d+1)&isprime(p/d+1), return(isprime(p-1)))) \\ Charles R Greathouse IV, Feb 15 2011
Comments