cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A091321 OU-Sigma multiperfect numbers.

Original entry on oeis.org

1, 6, 28, 90, 120, 496, 672, 8128, 10080, 63700, 220500, 523776, 1323000, 1528800, 2056320, 7856640, 33550336, 44553600, 162729000, 252927360, 459818240, 1379454720, 1476304896, 1980840960, 8589869056
Offset: 1

Views

Author

Yasutoshi Kohmoto, Feb 17 2004

Keywords

Comments

The OU-Sigma function is defined as OU-Sigma(n) = A107749(n).
Then an OU-Sigma perfect number satisfies OU-Sigma(n) = k*n for some k.
Every perfect number is here because OE-Sigma(2^(m-1)*M_m) = Sigma(2^(m-1))*UnitarySigma(M_m) = Sigma(2^(m-1))*Sigma(M_m) = 2^m*M_m.
Also in the sequence are 33550336, 8589869056, 22144573440, 51001180160, 153003540480, 243643438080, 583125903360, 71724486113280, 1555825650042470400, but there may be missing terms in between.

Examples

			Sequence begins 2*3, 2*3^2*5, 2^2*7, 2^2*5^2*7^2*13, 2^3*3*5, 2^4*31, 2^5*3^2*5*7, ...
		

Crossrefs

Programs

  • Mathematica
    fun[p_,e_] := If[p==2, 2^(e+1)-1, p^e+1]; f[n_] := If[n==1, 1, Times @@ fun @@@ FactorInteger[n]]; aQ[n_] := Divisible[f[n], n]; Select[Range[65000], aQ] (* Amiram Eldar, Mar 17 2019 *)
  • PARI
    f(n)= my(fm=factor(n)); prod(k=1, matsize(fm)[1], if(fm[k, 1]==2, 2^(fm[k, 2]+1)-1, fm[k, 1]^fm[k, 2]+1)); \\ A107749
    isok(n) = (f(n) % n) == 0; \\ Michel Marcus, Jan 24 2019

Extensions

Terms 220500 to 2056320 by R. J. Mathar, Jun 02 2011
Corrected and extended by Michel Marcus, Jan 24 2019
a(19)-a(25) from Amiram Eldar, Mar 17 2019