A091342 Given (1) f(h,j,a) = ( [ ((a/gcd(a,h)) / gcd(j+1,(a/gcd(a,h)))) * (h(j+1)) ] - [ ((a/gcd(a,h)) / gcd(j+1,(a/gcd(a,h)))) * (ja) ] ) / a then let (2) a(h) = d(h,j) = lcm( f(h,j,1) ... f(h,j,h) ).
1, 3, 10, 105, 252, 2310, 25740, 45045, 680680, 11639628, 10581480, 223092870, 1029659400, 2868336900, 77636318760, 4512611027925, 4247163320400, 4011209802600, 140603459396400, 133573286426580, 5215718803323600
Offset: 1
Examples
a(5) = lcm(9,4,7,3) = 252 a(7) = lcm(13,6,11,5,9,4,1) = 25740 a(10)= lcm(19,9,17,4,3,7,13,3,11,1) = 11639628 a(14)= lcm(27,13,25,6,23,11,3,5,19,9,17,4,15,1) = 2868336900 n=2: HilbertMatrix[n,n] 1 1/2 1/2 1/3 so a(2) = Denominator[(1 - 1/2 - 1/2 + 1/3)] = Denominator[1/3] = 3. The n X n Hilbert matrix begins: 1 1/2 1/3 1/4 1/5 1/6 1/7 1/8 ... 1/2 1/3 1/4 1/5 1/6 1/7 1/8 1/9 ... 1/3 1/4 1/5 1/6 1/7 1/8 1/9 1/10 ... 1/4 1/5 1/6 1/7 1/8 1/9 1/10 1/11 ... 1/5 1/6 1/7 1/8 1/9 1/10 1/11 1/12 ... 1/6 1/7 1/8 1/9 1/10 1/11 1/12 1/13 ...
Links
- Eric Weisstein's World of Mathematics, Hilbert Matrix.
- Eric Weisstein's World of Mathematics, Harmonic Number.
Programs
-
Mathematica
Denominator[Table[Sum[Sum[(-1)^(i+j)*1/(i+j-1),{i,1,n}],{j,1,n}],{n,1,40}]] (* Alexander Adamchuk, Apr 11 2006 *)
Formula
a(n) = Denominator[Sum[Sum[(-1)^(i+j)*1/(i+j-1),{i,1,n}],{j,1,n}]]. - Alexander Adamchuk, Apr 11 2006
Comments