cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A091351 Triangle T, read by rows, such that T(n,k) equals the (n-k)-th row sum of T^k, where T^k is the k-th power of T as a lower triangular matrix.

Original entry on oeis.org

1, 1, 1, 1, 2, 1, 1, 4, 3, 1, 1, 9, 9, 4, 1, 1, 24, 30, 16, 5, 1, 1, 77, 115, 70, 25, 6, 1, 1, 295, 510, 344, 135, 36, 7, 1, 1, 1329, 2602, 1908, 805, 231, 49, 8, 1, 1, 6934, 15133, 11904, 5325, 1616, 364, 64, 9, 1, 1, 41351, 99367, 83028, 39001, 12381, 2919, 540, 81, 10, 1
Offset: 0

Views

Author

Paul D. Hanna, Jan 02 2004

Keywords

Comments

Since T(n,0)=1 for n>=0, then the k-th column of the lower triangular matrix T equals the leftmost column of T^(k+1) for k>=0.

Examples

			T(7,3) = 344 = 1*1 + 9*3 + 9*9 + 4*30 + 1*115
= T(4,0)*T(2,2) +T(4,1)*T(3,2) +T(4,2)*T(4,2) +T(4,3)*T(5,2) +T(4,4)*T(6,2).
Rows begin:
{1},
{1,1},
{1,2,1},
{1,4,3,1},
{1,9,9,4,1},
{1,24,30,16,5,1},
{1,77,115,70,25,6,1},
{1,295,510,344,135,36,7,1},
{1,1329,2602,1908,805,231,49,8,1},
{1,6934,15133,11904,5325,1616,364,64,9,1},...
		

Crossrefs

Programs

  • PARI
    T(n,k)=if(k>n || n<0 || k<0,0,if(k==0 || k==n,1, sum(j=0,n-k,T(n-k,j)*T(j+k-1,k-1)););)

Formula

T(n, k) = sum_{j=0..n-k} T(n-k, j)*T(j+k-1, k-1) for n>=k>0 with T(n, 0)=1 (n>=0).
Equals SHIFT_UP(A104445), or A104445(n+1, k) = T(n, k) for n>=k>=0, where triangular matrix X=A104445 satisfies: SHIFT_LEFT_UP(X) = X^2 - X + I.

A091352 Row sums of triangle A091351, in which the k-th column lists the row sums of the k-th power of A091351 (when considered as a lower triangular matrix).

Original entry on oeis.org

1, 2, 4, 9, 24, 77, 295, 1329, 6934, 41351, 278680, 2101434, 17574552, 161740316, 1626733108, 17771416521, 209739328924, 2661301094008, 36148700652163, 523597247829867, 8059284921781892, 131408547139817541
Offset: 0

Views

Author

Paul D. Hanna, Jan 02 2004

Keywords

Comments

Equals column 1 of table A125781. Equals row sums and column 0 (shifted) of triangle A127420. - Paul D. Hanna, Feb 11 2007

Crossrefs

A104445 Triangular matrix T, read by rows, that satisfies: SHIFT_LEFT_UP(T) = T^2 - T + I, or, equivalently: T(n+1,k+1) = [T^2](n,k) - T(n,k) + [T^0](n,k) for n>=k>=0, with T(0,0)=1.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 4, 3, 1, 1, 1, 9, 9, 4, 1, 1, 1, 24, 30, 16, 5, 1, 1, 1, 77, 115, 70, 25, 6, 1, 1, 1, 295, 510, 344, 135, 36, 7, 1, 1, 1, 1329, 2602, 1908, 805, 231, 49, 8, 1, 1, 1, 6934, 15133, 11904, 5325, 1616, 364, 64, 9, 1, 1, 1, 41351, 99367, 83028, 39001
Offset: 0

Views

Author

Paul D. Hanna, Mar 07 2005

Keywords

Comments

Surprisingly, SHIFT_UP(T) = A091351, or T(n+1,k) = A091351(n,k) for n>=k>=0, where column k of A091351 equals column 0 of A091351^(k+1) for k>=0.

Examples

			Rows begin:
1;
1,1;
1,1,1;
1,2,1,1;
1,4,3,1,1;
1,9,9,4,1,1;
1,24,30,16,5,1,1;
1,77,115,70,25,6,1,1;
1,295,510,344,135,36,7,1,1;
1,1329,2602,1908,805,231,49,8,1,1;
1,6934,15133,11904,5325,1616,364,64,9,1,1; ...
		

Crossrefs

Cf. A091351, A104446 (matrix square); columns form: A091352, A091353, A091354.

Programs

  • PARI
    T(n,k)=if(n
    				

Formula

T(n, k) = Sum_{j=0..n-k-1} T(n-k, j)*T(j+k, k-1) for n>k>0 with T(n, 0)=T(n, n)=1 (n>=0).

A091354 Row sums of the matrix cube of triangle A091351, in which the k-th column lists the row sums of A091351^k (the k-th power of A091351 when considered as a lower triangular matrix).

Original entry on oeis.org

1, 4, 16, 70, 344, 1908, 11904, 83028, 642960, 5490560, 51373420, 523581128, 5781166688, 68819889018, 879350377816, 12012238559559, 174794145558664, 2700485871440464, 44163954923956850, 762460145368056070
Offset: 0

Views

Author

Paul D. Hanna, Jan 02 2004

Keywords

Comments

Also equals the third column of triangle A091351.

Crossrefs

A104447 Column 1 of triangular matrix A104446.

Original entry on oeis.org

1, 2, 5, 13, 39, 139, 587, 2897, 16462, 106301, 771313, 6228073, 55494336, 541651873, 5753940704, 66147591142, 818802488476, 10864622564915, 153914784829775, 2319599022540318, 37068215129072522, 626279667948552452
Offset: 0

Views

Author

Paul D. Hanna, Mar 08 2005

Keywords

Comments

A104446 equals the square of triangular matrix A104445, read by rows, where X=A104445 satisfies: SHIFT_LEFT_UP(X) = X^2 - X + I.

Crossrefs

Programs

  • PARI
    a(n)=local(A=Mat(1),B);for(m=1,n+1,B=A^2-A+A^0; A=matrix(m+1,m+1);for(i=1,m+1, for(j=1,i, if(i<2 || j==i,A[i,j]=1,if(j==1,A[i,j]=1,A[i,j]=B[i-1,j-1]))))); return((A^2)[n+2,2])

Formula

a(n) = A091352(n-1) + A091353(n-1).
Showing 1-5 of 5 results.