cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A104446 Square of triangular matrix A104445, read by rows, where X=A104445 satisfies: SHIFT_LEFT_UP(X) = X^2 - X + I.

Original entry on oeis.org

1, 2, 1, 3, 2, 1, 5, 5, 2, 1, 10, 13, 7, 2, 1, 25, 39, 25, 9, 2, 1, 78, 139, 100, 41, 11, 2, 1, 296, 587, 459, 205, 61, 13, 2, 1, 1330, 2897, 2418, 1149, 366, 85, 15, 2, 1, 6935, 16462, 14506, 7233, 2421, 595, 113, 17, 2, 1, 41352, 106301, 98161, 50905, 17706, 4535, 904
Offset: 0

Views

Author

Paul D. Hanna, Mar 08 2005

Keywords

Comments

Column 0: T(n,0) = 1 + A091352(n-1) for n>0. Column 1 is A104447. Row sums form A104448.

Examples

			Rows begin:
1;
2,1;
3,2,1;
5,5,2,1;
10,13,7,2,1;
25,39,25,9,2,1;
78,139,100,41,11,2,1;
296,587,459,205,61,13,2,1;
1330,2897,2418,1149,366,85,15,2,1
6935,16462,14506,7233,2421,595,113,17,2,1; ...
		

Crossrefs

Programs

  • PARI
    T(n,k)=local(A=Mat(1),B);for(m=1,n,B=A^2-A+A^0; A=matrix(m+1,m+1);for(i=1,m+1, for(j=1,i, if(i<2 || j==i,A[i,j]=1,if(j==1,A[i,j]=1,A[i,j]=B[i-1,j-1]))))); return((A^2)[n+1,k+1])

Formula

T(n, k) = A104445(n, k) + A104445(n+1, k+1) - I(n, k), where I=identity matrix. T(n, k) = A091351(n-1, k) + A091351(n, k+1) - I(n, k), for n>k>=0.

A091351 Triangle T, read by rows, such that T(n,k) equals the (n-k)-th row sum of T^k, where T^k is the k-th power of T as a lower triangular matrix.

Original entry on oeis.org

1, 1, 1, 1, 2, 1, 1, 4, 3, 1, 1, 9, 9, 4, 1, 1, 24, 30, 16, 5, 1, 1, 77, 115, 70, 25, 6, 1, 1, 295, 510, 344, 135, 36, 7, 1, 1, 1329, 2602, 1908, 805, 231, 49, 8, 1, 1, 6934, 15133, 11904, 5325, 1616, 364, 64, 9, 1, 1, 41351, 99367, 83028, 39001, 12381, 2919, 540, 81, 10, 1
Offset: 0

Views

Author

Paul D. Hanna, Jan 02 2004

Keywords

Comments

Since T(n,0)=1 for n>=0, then the k-th column of the lower triangular matrix T equals the leftmost column of T^(k+1) for k>=0.

Examples

			T(7,3) = 344 = 1*1 + 9*3 + 9*9 + 4*30 + 1*115
= T(4,0)*T(2,2) +T(4,1)*T(3,2) +T(4,2)*T(4,2) +T(4,3)*T(5,2) +T(4,4)*T(6,2).
Rows begin:
{1},
{1,1},
{1,2,1},
{1,4,3,1},
{1,9,9,4,1},
{1,24,30,16,5,1},
{1,77,115,70,25,6,1},
{1,295,510,344,135,36,7,1},
{1,1329,2602,1908,805,231,49,8,1},
{1,6934,15133,11904,5325,1616,364,64,9,1},...
		

Crossrefs

Programs

  • PARI
    T(n,k)=if(k>n || n<0 || k<0,0,if(k==0 || k==n,1, sum(j=0,n-k,T(n-k,j)*T(j+k-1,k-1)););)

Formula

T(n, k) = sum_{j=0..n-k} T(n-k, j)*T(j+k-1, k-1) for n>=k>0 with T(n, 0)=1 (n>=0).
Equals SHIFT_UP(A104445), or A104445(n+1, k) = T(n, k) for n>=k>=0, where triangular matrix X=A104445 satisfies: SHIFT_LEFT_UP(X) = X^2 - X + I.

A185620 Triangular matrix T that satisfies: T^3 - T^2 + I = SHIFT_LEFT(T), as read by rows.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 3, 1, 1, 1, 10, 5, 1, 1, 1, 42, 27, 7, 1, 1, 1, 226, 173, 52, 9, 1, 1, 1, 1525, 1330, 442, 85, 11, 1, 1, 1, 12555, 12134, 4345, 897, 126, 13, 1, 1, 1, 123098, 129359, 49114, 10687, 1586, 175, 15, 1, 1, 1, 1408656, 1587501, 632104, 143335, 22156, 2557
Offset: 0

Views

Author

Paul D. Hanna, Feb 01 2011

Keywords

Examples

			Triangle T begins:
1;
1, 1;
1, 1, 1;
1, 3, 1, 1;
1, 10, 5, 1, 1;
1, 42, 27, 7, 1, 1;
1, 226, 173, 52, 9, 1, 1;
1, 1525, 1330, 442, 85, 11, 1, 1;
1, 12555, 12134, 4345, 897, 126, 13, 1, 1;
1, 123098, 129359, 49114, 10687, 1586, 175, 15, 1, 1;
1, 1408656, 1587501, 632104, 143335, 22156, 2557, 232, 17, 1, 1;
1, 18499835, 22127494, 9167575, 2149761, 343091, 40936, 3858, 297, 19, 1, 1; ...
Matrix square T^2 begins:
1;
2, 1;
3, 2, 1;
6, 7, 2, 1;
18, 28, 11, 2, 1;
79, 142, 66, 15, 2, 1;
463, 913, 470, 120, 19, 2, 1;
3396, 7244, 3997, 1098, 190, 23, 2, 1;
...
Matrix cube T^3 begins:
1;
3, 1;
6, 3, 1;
16, 12, 3, 1;
60, 55, 18, 3, 1;
305, 315, 118, 24, 3, 1;
1988, 2243, 912, 205, 30, 3, 1;
15951, 19378, 8342, 1995, 316, 36, 3, 1;
...
Thus T^3 - T^2 + I begins:
1;
1, 1;
3, 1, 1;
10, 5, 1, 1;
42, 27, 7, 1, 1;
226, 173, 52, 9, 1, 1;
1525, 1330, 442, 85, 11, 1, 1;
12555, 12134, 4345, 897, 126, 13, 1, 1;
...
which equals T shifted left one column.
...
ALTERNATE GENERATING FORMULA.
Let U equal T shifted up one diagonal:
1;
1, 1;
1, 3, 1;
1, 10, 5, 1;
1, 42, 27, 7, 1;
1, 226, 173, 52, 9, 1;
1, 1525, 1330, 442, 85, 11, 1;
1, 12555, 12134, 4345, 897, 126, 13, 1;
...
then U*T^2 begins:
1;
3, 1;
10, 5, 1;
42, 27, 7, 1;
226, 173, 52, 9, 1;
1525, 1330, 442, 85, 11, 1;
12555, 12134, 4345, 897, 126, 13, 1;
...
which equals U shifted left one column.
		

Crossrefs

Cf. columns: A185621, A185622, A185623; A185624 (T^2), A185628 (T^3).
Cf. variants: A104445, A185641.

Programs

  • PARI
    {T(n, k)=local(A=Mat(1), B); for(m=1, n, B=A^3-A^2+A^0;
    A=matrix(m+1, m+1); for(i=1, m+1, for(j=1, i, if(i<2|j==i, A[i, j]=1,
    if(j==1, A[i, j]=1, A[i, j]=B[i-1, j-1]))))); return(A[n+1, k+1])}

Formula

Recurrence: T(n+1,k+1) = [T^3](n,k) - [T^2](n,k) + [T^0](n,k) for n>=k>=0, with T(n,0)=1 for n>=0.
Let U equal T shifted up one diagonal; then U*T^2 equals U shifted left one column.

A104447 Column 1 of triangular matrix A104446.

Original entry on oeis.org

1, 2, 5, 13, 39, 139, 587, 2897, 16462, 106301, 771313, 6228073, 55494336, 541651873, 5753940704, 66147591142, 818802488476, 10864622564915, 153914784829775, 2319599022540318, 37068215129072522, 626279667948552452
Offset: 0

Views

Author

Paul D. Hanna, Mar 08 2005

Keywords

Comments

A104446 equals the square of triangular matrix A104445, read by rows, where X=A104445 satisfies: SHIFT_LEFT_UP(X) = X^2 - X + I.

Crossrefs

Programs

  • PARI
    a(n)=local(A=Mat(1),B);for(m=1,n+1,B=A^2-A+A^0; A=matrix(m+1,m+1);for(i=1,m+1, for(j=1,i, if(i<2 || j==i,A[i,j]=1,if(j==1,A[i,j]=1,A[i,j]=B[i-1,j-1]))))); return((A^2)[n+2,2])

Formula

a(n) = A091352(n-1) + A091353(n-1).

A104448 Row sums of triangle A104446.

Original entry on oeis.org

1, 3, 6, 13, 33, 101, 372, 1624, 8263, 48285, 320031, 2380114, 19675986, 179314868, 1788473424, 19398149629, 227510745445, 2871040422932, 38810001746171, 559745948482030, 8582882169611759, 139467832061599433
Offset: 0

Views

Author

Paul D. Hanna, Mar 08 2005

Keywords

Comments

A104446 equals the square of triangular matrix A104445, read by rows, where X=[A104445] satisfies: SHIFT_LEFT_UP(X) = X^2 - X + I.

Crossrefs

Programs

  • PARI
    a(n)=local(A=Mat(1),B);for(m=1,n+1,B=A^2-A+A^0; A=matrix(m+1,m+1);for(i=1,m+1, for(j=1,i, if(i<2 || j==i,A[i,j]=1,if(j==1,A[i,j]=1,A[i,j]=B[i-1,j-1]))))); return(sum(k=1,n+1,(A^2)[n+1,k]))

Formula

a(n) = A091352(n) + A091352(n-1) for n>0.
Showing 1-5 of 5 results.