A104447
Column 1 of triangular matrix A104446.
Original entry on oeis.org
1, 2, 5, 13, 39, 139, 587, 2897, 16462, 106301, 771313, 6228073, 55494336, 541651873, 5753940704, 66147591142, 818802488476, 10864622564915, 153914784829775, 2319599022540318, 37068215129072522, 626279667948552452
Offset: 0
-
a(n)=local(A=Mat(1),B);for(m=1,n+1,B=A^2-A+A^0; A=matrix(m+1,m+1);for(i=1,m+1, for(j=1,i, if(i<2 || j==i,A[i,j]=1,if(j==1,A[i,j]=1,A[i,j]=B[i-1,j-1]))))); return((A^2)[n+2,2])
Original entry on oeis.org
1, 3, 6, 13, 33, 101, 372, 1624, 8263, 48285, 320031, 2380114, 19675986, 179314868, 1788473424, 19398149629, 227510745445, 2871040422932, 38810001746171, 559745948482030, 8582882169611759, 139467832061599433
Offset: 0
-
a(n)=local(A=Mat(1),B);for(m=1,n+1,B=A^2-A+A^0; A=matrix(m+1,m+1);for(i=1,m+1, for(j=1,i, if(i<2 || j==i,A[i,j]=1,if(j==1,A[i,j]=1,A[i,j]=B[i-1,j-1]))))); return(sum(k=1,n+1,(A^2)[n+1,k]))
A104445
Triangular matrix T, read by rows, that satisfies: SHIFT_LEFT_UP(T) = T^2 - T + I, or, equivalently: T(n+1,k+1) = [T^2](n,k) - T(n,k) + [T^0](n,k) for n>=k>=0, with T(0,0)=1.
Original entry on oeis.org
1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 4, 3, 1, 1, 1, 9, 9, 4, 1, 1, 1, 24, 30, 16, 5, 1, 1, 1, 77, 115, 70, 25, 6, 1, 1, 1, 295, 510, 344, 135, 36, 7, 1, 1, 1, 1329, 2602, 1908, 805, 231, 49, 8, 1, 1, 1, 6934, 15133, 11904, 5325, 1616, 364, 64, 9, 1, 1, 1, 41351, 99367, 83028, 39001
Offset: 0
Rows begin:
1;
1,1;
1,1,1;
1,2,1,1;
1,4,3,1,1;
1,9,9,4,1,1;
1,24,30,16,5,1,1;
1,77,115,70,25,6,1,1;
1,295,510,344,135,36,7,1,1;
1,1329,2602,1908,805,231,49,8,1,1;
1,6934,15133,11904,5325,1616,364,64,9,1,1; ...
Showing 1-3 of 3 results.
Comments