cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A091360 Partial sums of A000219.

Original entry on oeis.org

1, 2, 5, 11, 24, 48, 96, 182, 342, 624, 1124, 1983, 3462, 5947, 10114, 16993, 28290, 46624, 76225, 123555, 198833, 317627, 504102, 794885, 1246079, 1942112, 3010857, 4643515, 7126749, 10886361, 16555324, 25067633, 37801062, 56776035, 84951990, 126643036, 188127997, 278507781, 410949776, 604437277, 886284200, 1295668181
Offset: 0

Views

Author

Christian G. Bower, Jan 02 2004

Keywords

Comments

Convergent of columns of A091355.

Crossrefs

Programs

  • Mathematica
    CoefficientList[Series[1/(1-x)*Product[1/(1-x^k)^k,{k,1,50}],{x,0,50}],x] (* Vaclav Kotesovec, Aug 16 2015 *)
  • PARI
    N=66; x='x+O('x^N); Vec( 1/((1-x)*prod(n=1,N, (1-x^n)^n )) ) \\ Joerg Arndt, Mar 15 2014

Formula

Euler transform of 2, 2, 3, 4, 5, 6, 7, 8, 9, ...
G.f.: 1/( (1-x) * prod(n>=1, (1-x^n)^n ) ). [Joerg Arndt, Mar 15 2014]
From Vaclav Kotesovec, Aug 16 2015: (Start)
a(n) = Sum_{k=0..n} A000219(k).
a(n) ~ (n/(2*Zeta(3)))^(1/3) * A000219(n).
a(n) ~ exp(1/12 + 3 * Zeta(3)^(1/3) * n^(2/3) / 2^(2/3)) / (A * 2^(23/36) * sqrt(3*Pi) * Zeta(3)^(5/36) * n^(13/36)), where Zeta(3) = A002117 and A = A074962 is the Glaisher-Kinkelin constant.
(End)
G.f.: exp(Sum_{k>=1} (sigma_2(k) + 1)*x^k/k). - Ilya Gutkovskiy, Aug 21 2018