A091360 Partial sums of A000219.
1, 2, 5, 11, 24, 48, 96, 182, 342, 624, 1124, 1983, 3462, 5947, 10114, 16993, 28290, 46624, 76225, 123555, 198833, 317627, 504102, 794885, 1246079, 1942112, 3010857, 4643515, 7126749, 10886361, 16555324, 25067633, 37801062, 56776035, 84951990, 126643036, 188127997, 278507781, 410949776, 604437277, 886284200, 1295668181
Offset: 0
Keywords
Links
- Joerg Arndt and Vaclav Kotesovec, Table of n, a(n) for n = 0..5000 (first 500 terms from Joerg Arndt)
- N. J. A. Sloane, Transforms
Programs
-
Mathematica
CoefficientList[Series[1/(1-x)*Product[1/(1-x^k)^k,{k,1,50}],{x,0,50}],x] (* Vaclav Kotesovec, Aug 16 2015 *)
-
PARI
N=66; x='x+O('x^N); Vec( 1/((1-x)*prod(n=1,N, (1-x^n)^n )) ) \\ Joerg Arndt, Mar 15 2014
Formula
Euler transform of 2, 2, 3, 4, 5, 6, 7, 8, 9, ...
G.f.: 1/( (1-x) * prod(n>=1, (1-x^n)^n ) ). [Joerg Arndt, Mar 15 2014]
From Vaclav Kotesovec, Aug 16 2015: (Start)
a(n) = Sum_{k=0..n} A000219(k).
a(n) ~ (n/(2*Zeta(3)))^(1/3) * A000219(n).
a(n) ~ exp(1/12 + 3 * Zeta(3)^(1/3) * n^(2/3) / 2^(2/3)) / (A * 2^(23/36) * sqrt(3*Pi) * Zeta(3)^(5/36) * n^(13/36)), where Zeta(3) = A002117 and A = A074962 is the Glaisher-Kinkelin constant.
(End)
G.f.: exp(Sum_{k>=1} (sigma_2(k) + 1)*x^k/k). - Ilya Gutkovskiy, Aug 21 2018
Comments