A091362 Primes p such that the sum of the digits of p is not prime, but the sum of the squares of the digits of p is prime.
997, 1699, 2887, 5569, 5659, 5839, 5857, 6199, 6883, 6991, 7477, 8287, 8539, 8863, 8999, 9619, 9907, 11779, 11887, 13399, 13669, 14479, 14767, 14947, 15559, 16369, 16477, 16693, 16747, 16963, 17377, 17449, 17467, 17737, 17791, 17827, 17881
Offset: 1
Examples
a(1)=997 because 9+9+7 = 25 which is not prime, but 9^2+9^2+7^2 = 211 which is prime.
Links
- Vincenzo Librandi, Table of n, a(n) for n = 1..1000
Crossrefs
Programs
-
Mathematica
ssdQ[n_]:=Module[{idn=IntegerDigits[n]},!PrimeQ[Total[idn]]&&PrimeQ[ Total[ idn^2]]]; Select[Prime[Range[2100]],ssdQ] (* Harvey P. Dale, Jun 28 2011 *)
Comments