A091449 Array T(n,k) read by antidiagonals, where row n is the increasing sequence of numbers m for which the simple continued fraction of sqrt(m) has period n, n >= 0, k >= 1.
1, 2, 4, 3, 5, 9, 41, 6, 10, 16, 7, 130, 8, 17, 25, 13, 14, 269, 11, 26, 36, 19, 29, 23, 370, 12, 37, 49, 58, 21, 53, 28, 458, 15, 50, 64, 31, 73, 22, 74, 32, 697, 18, 65, 81, 106, 44, 202, 45, 85, 33, 986, 20, 82, 100, 43, 113, 69, 250, 52, 89, 34, 1313, 24, 101, 121
Offset: 0
Examples
Array begins: n\k| 1 2 3 4 5 6 7 8 9 10 11 ---+------------------------------------------------ 0 | 1 4 9 16 25 36 49 64 81 100 121 1 | 2 5 10 17 26 37 50 65 82 101 122 2 | 3 6 8 11 12 15 18 20 24 27 30 3 | 41 130 269 370 458 697 986 1313 1325 1613 1714 4 | 7 14 23 28 32 33 34 47 55 60 62 5 | 13 29 53 74 85 89 125 173 185 218 229 6 | 19 21 22 45 52 54 57 59 70 77 88 7 | 58 73 202 250 274 314 349 425 538 761 1010 8 | 31 44 69 71 91 92 108 135 153 158 160 9 | 106 113 137 149 265 389 493 610 698 754 970 10 | 43 67 86 93 115 116 118 129 154 159 161 The least n for which CF(sqrt(n)) has period of length 4 is n=7, with CF=[2;1,1,1,4,1,1,1,4,1,1,1,4,...]; thus T(4,1)=7. [The array T(n,k) is indexed by n=0,1,2,3,..., k=1,2,3... .] Row 0 consists of squares: 1,4,9,...
Crossrefs
Extensions
a(17) = T(3,3) corrected by Pontus von Brömssen, Nov 23 2024
Comments