cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A091477 Decimal expansion of (3*Catalan*Pi)/4 - Pi^3/64 + (Pi^2*log(64))/64 - (105*zeta(3))/64.

Original entry on oeis.org

3, 4, 2, 9, 4, 7, 4, 4, 9, 8, 1, 6, 8, 3, 1, 4, 7, 5, 1, 8, 6, 8, 7, 3, 4, 5, 1, 4, 2, 1, 1, 7, 5, 4, 1, 5, 6, 3, 6, 9, 1, 9, 3, 1, 6, 0, 9, 4, 0, 4, 0, 4, 1, 3, 2, 2, 1, 8, 3, 0, 2, 8, 4, 0, 5, 9, 9, 4, 7, 5, 9, 3, 7, 3, 9, 2, 8, 1, 2, 0, 4, 5, 8, 2, 4, 4, 1, 1, 8, 7, 5, 7, 5, 2, 7, 1, 6, 2, 3, 1, 4, 7
Offset: 0

Views

Author

Eric W. Weisstein, Jan 13 2004

Keywords

Examples

			0.342947449816831475186873451421175415636919316094040413221830284...
		

Crossrefs

Programs

  • Magma
    SetDefaultRealField(RealField(100)); R:=RealField(); L:=RiemannZeta();  (48*Catalan(R)*Pi(R) - Pi(R)^3 + Pi(R)^2*Log(64) - 105*Evaluate(L,3))/64; // G. C. Greubel, Aug 25 2018
  • Mathematica
    RealDigits[(48*Catalan*Pi - Pi^3 + Pi^2*Log[64] - 105*Zeta[3])/64, 10, 100][[1]] (* G. C. Greubel, Aug 25 2018 *)
  • PARI
    default(realprecision, 100); (48*Catalan*Pi - Pi^3 + Pi^2*log(64) - 105*zeta(3))/64 \\ G. C. Greubel, Aug 25 2018
    

Formula

Equals Integral_{t=0..Pi/4} t^3/sin(t)^2 dt.