A091510 Number of nonisomorphic algebras with a ternary operation (3-d groupoids) with n elements.
1, 1, 136, 1270933717887, 14178431955039102651224805804387336192, 19591572513704791799478942287037427963655716808579364910828644498251439742675781250000
Offset: 0
Keywords
Links
- Philip Turecek, Table of n, a(n) for n = 0..10
Programs
-
Sage
Pol.
= InfinitePolynomialRing(QQ) @cached_function def Z(n): if n==0: return Pol.one() return sum(x[k]*Z(n-k) for k in (1..n))/n def a(n,k=3): P = Z(n) q = 0 coeffs = P.coefficients() for mon in enumerate(P.monomials()): m = Pol(mon[1]) p = 1 V = m.variables() T = cartesian_product(k*[V]) Tsorted = [tuple(sorted(u)) for u in T] Tset = set(Tsorted) for t in Tset: r = [Pol.varname_key(str(u))[1] for u in t] j = [m.degree(u) for u in t] D = 0 lcm_r = lcm(r) for d in divisors(lcm_r): try: D += d*m.degrees()[-d-1] except: break p *= D^(Tsorted.count(t)*prod(r)/lcm_r*prod(j)) q += coeffs[mon[0]]*p return q # Philip Turecek, Jun 12 2023
Formula
a(n) = Sum_{1*s_1+2*s_2+...=n} (fixA[s_1, s_2, ...]/(1^s_1*s_1!*2^s_2*s_2!*...)) where fixA[s_1, s_2, ...] = Product_{i, j, k>=1} ( (Sum_{d|lcm(i, j, k)} (d*s_d))^(s_i*s_j*s_k*lcm(i, j, k)/(i*j*k))).
a(n) is asymptotic to n^(n^3)/n!.