cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A091510 Number of nonisomorphic algebras with a ternary operation (3-d groupoids) with n elements.

Original entry on oeis.org

1, 1, 136, 1270933717887, 14178431955039102651224805804387336192, 19591572513704791799478942287037427963655716808579364910828644498251439742675781250000
Offset: 0

Views

Author

Christian G. Bower, Jan 16 2004

Keywords

Crossrefs

Programs

  • Sage
    Pol. = InfinitePolynomialRing(QQ)
    @cached_function
    def Z(n):
        if n==0: return Pol.one()
        return sum(x[k]*Z(n-k) for k in (1..n))/n
    def a(n,k=3):
        P = Z(n)
        q = 0
        coeffs = P.coefficients()
        for mon in enumerate(P.monomials()):
            m = Pol(mon[1])
            p = 1
            V = m.variables()
            T = cartesian_product(k*[V])
            Tsorted = [tuple(sorted(u)) for u in T]
            Tset = set(Tsorted)
            for t in Tset:
                r = [Pol.varname_key(str(u))[1] for u in t]
                j = [m.degree(u) for u in t]
                D = 0
                lcm_r = lcm(r)
                for d in divisors(lcm_r):
                    try: D += d*m.degrees()[-d-1]
                    except: break
                p *= D^(Tsorted.count(t)*prod(r)/lcm_r*prod(j))
            q += coeffs[mon[0]]*p
        return q
    # Philip Turecek, Jun 12 2023

Formula

a(n) = Sum_{1*s_1+2*s_2+...=n} (fixA[s_1, s_2, ...]/(1^s_1*s_1!*2^s_2*s_2!*...)) where fixA[s_1, s_2, ...] = Product_{i, j, k>=1} ( (Sum_{d|lcm(i, j, k)} (d*s_d))^(s_i*s_j*s_k*lcm(i, j, k)/(i*j*k))).
a(n) is asymptotic to n^(n^3)/n!.