1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 110, 180, 783, 859, 1803, 7591, 10763, 19105, 50172, 355146, 1101696, 1452050, 3047334, 3933030
Offset: 1
A153679
Minimal exponents m such that the fractional part of (1024/1000)^m obtains a maximum (when starting with m=1).
Original entry on oeis.org
1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 82, 134, 1306, 2036, 6393, 34477, 145984, 2746739, 2792428, 8460321
Offset: 1
A153687
Minimal exponents m such that the fractional part of (11/10)^m obtains a maximum (when starting with m=1).
Original entry on oeis.org
1, 2, 3, 4, 5, 6, 7, 23, 56, 77, 103, 320, 1477, 1821, 2992, 15290, 180168, 410498, 548816, 672732, 2601223
Offset: 1
A153695
Minimal exponents m such that the fractional part of (10/9)^m obtains a maximum (when starting with m=1).
Original entry on oeis.org
1, 2, 3, 4, 5, 6, 13, 17, 413, 555, 2739, 3509, 3869, 5513, 12746, 31808, 76191, 126237, 430116, 477190, 1319307, 3596185
Offset: 1
a(7)=13, since fract((10/9)^13) = 0.93..., but fract((10/9)^k) < 0.89 for 1 <= k <= 12; thus fract((10/9)^13) > fract((10/9)^k) for 1 <= k < 13 and 13 is the minimal exponent > 6 with this property.
-
$MaxExtraPrecision = 100000;
p = 0; Select[Range[1, 20000],
If[FractionalPart[(10/9)^#] > p, p = FractionalPart[(10/9)^#];
True] &] (* Robert Price, Mar 24 2019 *)
-
A153695_list, m, m10, m9, q = [], 1, 10, 9, 0
while m < 10**4:
r = m10 % m9
if r > q:
q = r
A153695_list.append(m)
m += 1
m10 *= 10
m9 *= 9
q *= 9 # Chai Wah Wu, May 16 2020
A153715
Greatest number m such that the fractional part of Pi^A153711(m) >= 1-(1/m).
Original entry on oeis.org
1, 7, 32, 53, 189, 2665, 10810, 26577, 128778, 483367
Offset: 1
a(3) = 32, since 1-(1/33) = 0.9696... > fract(Pi^A153711(3)) = fract(Pi^15) = 0.96938... >= 0.96875 = 1-(1/32).
-
$MaxExtraPrecision = 100000;
A153711 = {1, 2, 15, 22, 58, 157, 1030, 5269, 145048, 151710};
Floor[1/(1-FractionalPart[Pi^A153711])] (* Robert Price, Apr 18 2019 *)
A153723
Greatest number m such that the fractional part of (Pi-2)^A153719(m) >= 1-(1/m).
Original entry on oeis.org
1, 1, 1, 3, 16, 24, 45, 158, 410, 946, 1182, 8786, 16159, 20188, 61392, 78800, 78959, 217556
Offset: 1
a(5) = 16, since 1-(1/17) = 0.941176... > fract((Pi-2)^A153719(5)) = fract((Pi-2)^5) = 0.9389... >= 0.9375 = 1-(1/16).
-
$MaxExtraPrecision = 100000;
A153719 = {1, 2, 3, 4, 5, 39, 56, 85, 557, 911, 2919, 2921, 4491,
11543, 15724, 98040, 110932, 126659};
Floor[1/(1 - FractionalPart[(Pi - 2)^A153719])] (* Robert Price, Apr 18 2019 *)
A154132
Minimal exponents m such that the fractional part of (4/3)^m increases monotonically (when starting with m=1).
Original entry on oeis.org
1, 2, 8, 39, 2495, 3895, 4714, 8592
Offset: 1
Showing 1-8 of 8 results.
Comments
Examples
Crossrefs
Programs
Mathematica
Python
Formula
Extensions