1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 110, 180, 783, 859, 1803, 7591, 10763, 19105, 50172, 355146, 1101696, 1452050, 3047334, 3933030
Offset: 1
A153687
Minimal exponents m such that the fractional part of (11/10)^m obtains a maximum (when starting with m=1).
Original entry on oeis.org
1, 2, 3, 4, 5, 6, 7, 23, 56, 77, 103, 320, 1477, 1821, 2992, 15290, 180168, 410498, 548816, 672732, 2601223
Offset: 1
A153695
Minimal exponents m such that the fractional part of (10/9)^m obtains a maximum (when starting with m=1).
Original entry on oeis.org
1, 2, 3, 4, 5, 6, 13, 17, 413, 555, 2739, 3509, 3869, 5513, 12746, 31808, 76191, 126237, 430116, 477190, 1319307, 3596185
Offset: 1
a(7)=13, since fract((10/9)^13) = 0.93..., but fract((10/9)^k) < 0.89 for 1 <= k <= 12; thus fract((10/9)^13) > fract((10/9)^k) for 1 <= k < 13 and 13 is the minimal exponent > 6 with this property.
-
$MaxExtraPrecision = 100000;
p = 0; Select[Range[1, 20000],
If[FractionalPart[(10/9)^#] > p, p = FractionalPart[(10/9)^#];
True] &] (* Robert Price, Mar 24 2019 *)
-
A153695_list, m, m10, m9, q = [], 1, 10, 9, 0
while m < 10**4:
r = m10 % m9
if r > q:
q = r
A153695_list.append(m)
m += 1
m10 *= 10
m9 *= 9
q *= 9 # Chai Wah Wu, May 16 2020
A091560
Fractional part of e^a(n) is the largest yet.
Original entry on oeis.org
1, 8, 19, 76, 166, 178, 209, 1907, 20926, 22925, 32653, 119136
Offset: 1
A153707
Greatest number m such that the fractional part of e^A091560(m) >= 1-(1/m).
Original entry on oeis.org
3, 23, 27, 41, 59, 261, 348, 2720, 3198, 6064, 72944, 347065
Offset: 1
a(2)=23, since 1-(1/24) = 0.9583...> fract(e^A091560(2)) = fract(e^8) = 0.95798.. >= 0.95652... >= 1-(1/23).
-
$MaxExtraPrecision = 100000;
A091560 = {1,8,19,76,166,178,209,1907,20926,22925,32653,119136};
Floor[1/(1-FractionalPart[E^A091560])] (* Robert Price, Apr 18 2019 *)
A153711
Minimal exponents m such that the fractional part of Pi^m obtains a maximum (when starting with m=1).
Original entry on oeis.org
1, 2, 15, 22, 58, 157, 1030, 5269, 145048, 151710
Offset: 1
A153715
Greatest number m such that the fractional part of Pi^A153711(m) >= 1-(1/m).
Original entry on oeis.org
1, 7, 32, 53, 189, 2665, 10810, 26577, 128778, 483367
Offset: 1
a(3) = 32, since 1-(1/33) = 0.9696... > fract(Pi^A153711(3)) = fract(Pi^15) = 0.96938... >= 0.96875 = 1-(1/32).
-
$MaxExtraPrecision = 100000;
A153711 = {1, 2, 15, 22, 58, 157, 1030, 5269, 145048, 151710};
Floor[1/(1-FractionalPart[Pi^A153711])] (* Robert Price, Apr 18 2019 *)
A153723
Greatest number m such that the fractional part of (Pi-2)^A153719(m) >= 1-(1/m).
Original entry on oeis.org
1, 1, 1, 3, 16, 24, 45, 158, 410, 946, 1182, 8786, 16159, 20188, 61392, 78800, 78959, 217556
Offset: 1
a(5) = 16, since 1-(1/17) = 0.941176... > fract((Pi-2)^A153719(5)) = fract((Pi-2)^5) = 0.9389... >= 0.9375 = 1-(1/16).
-
$MaxExtraPrecision = 100000;
A153719 = {1, 2, 3, 4, 5, 39, 56, 85, 557, 911, 2919, 2921, 4491,
11543, 15724, 98040, 110932, 126659};
Floor[1/(1 - FractionalPart[(Pi - 2)^A153719])] (* Robert Price, Apr 18 2019 *)
A153719
Minimal exponents m such that the fractional part of (Pi-2)^m obtains a maximum (when starting with m=1).
Original entry on oeis.org
1, 2, 3, 4, 5, 39, 56, 85, 557, 911, 2919, 2921, 4491, 11543, 15724, 98040, 110932, 126659
Offset: 1
Showing 1-10 of 12 results.
Next
Comments
Examples
Crossrefs
Programs
Mathematica
Python
Formula
Extensions