1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 110, 180, 783, 859, 1803, 7591, 10763, 19105, 50172, 355146, 1101696, 1452050, 3047334, 3933030
Offset: 1
A153679
Minimal exponents m such that the fractional part of (1024/1000)^m obtains a maximum (when starting with m=1).
Original entry on oeis.org
1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 82, 134, 1306, 2036, 6393, 34477, 145984, 2746739, 2792428, 8460321
Offset: 1
A153687
Minimal exponents m such that the fractional part of (11/10)^m obtains a maximum (when starting with m=1).
Original entry on oeis.org
1, 2, 3, 4, 5, 6, 7, 23, 56, 77, 103, 320, 1477, 1821, 2992, 15290, 180168, 410498, 548816, 672732, 2601223
Offset: 1
A153695
Minimal exponents m such that the fractional part of (10/9)^m obtains a maximum (when starting with m=1).
Original entry on oeis.org
1, 2, 3, 4, 5, 6, 13, 17, 413, 555, 2739, 3509, 3869, 5513, 12746, 31808, 76191, 126237, 430116, 477190, 1319307, 3596185
Offset: 1
a(7)=13, since fract((10/9)^13) = 0.93..., but fract((10/9)^k) < 0.89 for 1 <= k <= 12; thus fract((10/9)^13) > fract((10/9)^k) for 1 <= k < 13 and 13 is the minimal exponent > 6 with this property.
-
$MaxExtraPrecision = 100000;
p = 0; Select[Range[1, 20000],
If[FractionalPart[(10/9)^#] > p, p = FractionalPart[(10/9)^#];
True] &] (* Robert Price, Mar 24 2019 *)
-
A153695_list, m, m10, m9, q = [], 1, 10, 9, 0
while m < 10**4:
r = m10 % m9
if r > q:
q = r
A153695_list.append(m)
m += 1
m10 *= 10
m9 *= 9
q *= 9 # Chai Wah Wu, May 16 2020
A091560
Fractional part of e^a(n) is the largest yet.
Original entry on oeis.org
1, 8, 19, 76, 166, 178, 209, 1907, 20926, 22925, 32653, 119136
Offset: 1
A153723
Greatest number m such that the fractional part of (Pi-2)^A153719(m) >= 1-(1/m).
Original entry on oeis.org
1, 1, 1, 3, 16, 24, 45, 158, 410, 946, 1182, 8786, 16159, 20188, 61392, 78800, 78959, 217556
Offset: 1
a(5) = 16, since 1-(1/17) = 0.941176... > fract((Pi-2)^A153719(5)) = fract((Pi-2)^5) = 0.9389... >= 0.9375 = 1-(1/16).
-
$MaxExtraPrecision = 100000;
A153719 = {1, 2, 3, 4, 5, 39, 56, 85, 557, 911, 2919, 2921, 4491,
11543, 15724, 98040, 110932, 126659};
Floor[1/(1 - FractionalPart[(Pi - 2)^A153719])] (* Robert Price, Apr 18 2019 *)
A154133
Numbers k such that the fractional part of (4/3)^k is greater than 1-(1/k).
Original entry on oeis.org
1, 2, 8, 39, 113, 3895, 4714, 8592, 34289, 60097, 942859, 2759790, 6649343, 7937397, 14480816, 19338413, 19338414, 19338415, 23187701, 124679421
Offset: 1
a(4) = 39, since fract((4/3)^39) = 0.9991861450... > 0.974358... = 1 - (1/39), but fract((4/3)^k) <= 1 - (1/k) for 8 < k < 39.
-
Select[Range[5000], N[FractionalPart[(4/3)^#], 100] > 1 - (1/#) &] (* G. C. Greubel, Sep 02 2016 *)
-
isok(n) = frac((4/3)^n) > 1 - 1/n; \\ Michel Marcus, Sep 03 2016
Showing 1-8 of 8 results.
Comments
Examples
Crossrefs
Programs
Mathematica
Python
Formula
Extensions