cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-6 of 6 results.

A091574 Poincaré series [or Poincare series] of the preprojective algebra of an extended Dynkin diagram of type D_4.

Original entry on oeis.org

5, 8, 15, 16, 25, 24, 35, 32, 45, 40, 55, 48, 65, 56, 75, 64, 85, 72, 95, 80, 105, 88, 115, 96, 125, 104, 135, 112, 145, 120, 155, 128, 165, 136, 175, 144, 185, 152, 195, 160, 205, 168, 215, 176, 225, 184, 235, 192, 245, 200, 255, 208
Offset: 0

Views

Author

Paul Boddington, Jan 22 2004

Keywords

Comments

a(n) is also the number of orbits of length n for T^2, if T is a map with n orbits of length n. - Thomas Ward, Apr 08 2009

Examples

			a(2) = (1/2)*mu(2)*sigma_2(2)+(1/2)*mu(1)*sigma_2(4) = 8. - _Thomas Ward_, Apr 08 2009
		

References

  • I. Reiten, Dynkin diagrams and the representation theory of algebras, Notices of the AMS, May 1997, Vol. 44, Number 5.

Crossrefs

Programs

  • Mathematica
    CoefficientList[ Series[ (5 + 8x + 5x^2) / (1 - 2x^2 + x^4), {x, 0, 51}], x] (* Jean-François Alcover, Dec 02 2011 *)
    With[{nn=40},Riffle[10*Range[nn]-5,8*Range[nn]]] (* or *) LinearRecurrence[ {0,2,0,-1},{5,8,15,16},80] (* Harvey P. Dale, Oct 30 2013 *)
  • PARI
    (1/n)*sumdiv(n,d,moebius(n/d)*sumdiv(2*d,e,e^2)) \\ Thomas Ward, Apr 08 2009

Formula

a(n) = 5*(2*n+1) if n even, 4*(n+1) if n odd.
G.f.: (5+8*x+5*x^2)/(1-x^2)^2.
a(n) = (1/n)*Sum_{d|n} mobius(n/d)*sigma_2(2*d). - Thomas Ward, Apr 08 2009

A091573 Poincaré series [or Poincare series] of the preprojective algebra of an extended Dynkin diagram of type E_6.

Original entry on oeis.org

7, 12, 17, 24, 31, 36, 41, 48, 55, 60, 65, 72, 79, 84, 89, 96, 103, 108, 113, 120, 127, 132, 137, 144, 151, 156, 161, 168, 175, 180, 185, 192, 199, 204, 209, 216, 223, 228, 233, 240, 247, 252, 257, 264, 271, 276, 281, 288, 295, 300, 305, 312, 319, 324, 329
Offset: 0

Views

Author

Paul Boddington, Jan 22 2004

Keywords

References

  • I. Reiten, Dynkin diagrams and the representation theory of algebras, Notices of the AMS, Vol. 44, Number 5.

Crossrefs

Programs

  • Mathematica
    CoefficientList[ Series[ (7 - 2x + 7x^2) / (1 - 2x + 2x^2 - 2x^3 + x^4), {x, 0, 49}], x] (* Jean-François Alcover, Dec 02 2011 *)
  • PARI
    a(n) = (12+(-I)^n+I^n+12*n)/2 \\ Colin Barker, Oct 18 2015
    
  • PARI
    Vec((7-2*x+7*x^2)/((1+x^2)*(1-x)^2) + O(x^100)) \\ Colin Barker, Oct 18 2015
    
  • PARI
    a(n) = if(n%2 == 1, 6*n+6, if(n%4 == 0, 6*n+7, 6*n+5));
    vector(100, n, a(n-1)) \\ Altug Alkan, Oct 18 2015

Formula

a(n) = 6*n+6 (n odd), 6*n+7 (n==0 (mod 4)), 6*n+5 (n==2 (mod 4)).
G.f.: (7-2*x+7*x^2) / ((1+x^2)*(1-x)^2).
From Colin Barker, Oct 18 2015: (Start)
a(n) = 2*a(n-1)-2*a(n-2)+2*a(n-3)-a(n-4) for n>3.
a(n) = (12+(-i)^n+i^n+12*n)/2 where i = sqrt(-1).
(End)

Extensions

G.f. corrected by Colin Barker, Oct 18 2015

A091571 Poincaré series [or Poincare series] of the preprojective algebra of an extended Dynkin diagram of type E_8.

Original entry on oeis.org

9, 16, 23, 30, 37, 44, 53, 60, 67, 74, 83, 90, 99, 106, 113, 118, 127, 134, 143, 150, 159, 164, 173, 180, 189, 194, 203, 208, 217, 224, 235, 240, 249, 254, 263, 268, 279, 284, 293, 298, 309, 314, 325, 330, 339, 342, 353, 358, 369, 374, 385, 388, 399, 404, 415
Offset: 0

Views

Author

Paul Boddington, Jan 22 2004

Keywords

Crossrefs

Programs

  • Mathematica
    CoefficientList[ Series[ (9-2x+9x^3-2x^4+9x^5-2x^7+9x^8) / (1-2x+x^2+x^3-2x^4+2x^5-2x^6+x^7+x^8-2x^9+x^10), {x, 0, 54}], x] (* Jean-François Alcover, Dec 02 2011 *)

Formula

a(n) = 7*(n+1) + 2*A087866(n).
G.f.: (7/(1-x)^2) + 2*(1-x^15)/((1-x^6)*(1-x^10)*(1-x)).

A091572 Poincaré series [or Poincare series] of the preprojective algebra of an extended Dynkin diagram of type E_7.

Original entry on oeis.org

8, 14, 20, 26, 34, 40, 48, 54, 62, 66, 74, 80, 90, 94, 102, 106, 116, 120, 130, 134, 144, 146, 156, 160, 172, 174, 184, 186, 198, 200, 212, 214, 226, 226, 238, 240, 254, 254, 266, 266, 280, 280, 294, 294, 308, 306, 320, 320, 336, 334, 348, 346, 362, 360, 376
Offset: 0

Views

Author

Paul Boddington, Jan 22 2004

Keywords

References

  • I, Reiten, Dynkin diagrams and the representation theory of algebras, Notices of the AMS, Vol. 44, No 5.

Crossrefs

Programs

  • Mathematica
    CoefficientList[ Series[ (8 + 6x + 6x^2 + 14x^3 + 6x^4 + 6x^5 + 8x^6) / (1 - x + x^3 - 2x^4 + x^5 - x^7 + x^8),{x,0,54}],x] (* Jean-François Alcover, Dec 02 2011 *)

Formula

a(n) = 6*(n+1) + 2*A087504(n).
G.f.: (6/(1-x)^2)+2*(1-x^9)/((1-x^4)*(1-x^6)*(1-x)).

A091576 Poincaré series [or Poincare series] of the preprojective algebra of a Dynkin diagram of type E_7.

Original entry on oeis.org

7, 12, 17, 22, 27, 30, 33, 34, 35, 34, 33, 30, 27, 22, 17, 12, 7, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
Offset: 0

Views

Author

Paul Boddington, Jan 22 2004

Keywords

Comments

The series is a polynomial because the algebra is finite dimensional. See the entry for A091575 for a general formula.

Crossrefs

A091577 Poincaré series [or Poincare series] of the preprojective algebra of a Dynkin diagram of type E_6.

Original entry on oeis.org

6, 10, 14, 18, 20, 20, 20, 18, 14, 10, 6, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
Offset: 0

Views

Author

Paul Boddington, Jan 22 2004

Keywords

Comments

The series is a polynomial because the algebra is finite dimensional. See the entry for A091575 for a general formula.

References

  • I. Reiten, Dynkin diagrams and the representation theory of algebras, Notices of the AMS, Vol. 44, Number 5.

Crossrefs

Showing 1-6 of 6 results.