cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A091613 Triangle: T(n,k) = number of compositions (ordered partitions) of n such that some part is repeated consecutively k times and no part is repeated consecutively more than k times.

Original entry on oeis.org

1, 1, 1, 3, 0, 1, 4, 3, 0, 1, 7, 6, 2, 0, 1, 14, 10, 5, 2, 0, 1, 23, 23, 11, 4, 2, 0, 1, 39, 50, 22, 10, 4, 2, 0, 1, 71, 99, 48, 22, 9, 4, 2, 0, 1, 124, 200, 105, 46, 21, 9, 4, 2, 0, 1, 214, 404, 223, 101, 46, 20, 9, 4, 2, 0, 1, 378, 805, 468, 218, 98, 45, 20, 9, 4, 2, 0, 1, 661, 1599, 979, 466, 213, 98, 44, 20, 9, 4, 2, 0, 1
Offset: 1

Views

Author

Christian G. Bower, Jan 23 2004

Keywords

Comments

Cf. A232294 - A128695 = column 3. - Geoffrey Critzer, Mar 24 2014

Examples

			Triangle starts:
    1;
    1,   1;
    3,   0,   1;
    4,   3,   0,  1;
    7,   6,   2,  0,  1;
   14,  10,   5,  2,  0, 1;
   23,  23,  11,  4,  2, 0, 1;
   39,  50,  22, 10,  4, 2, 0, 1;
   71,  99,  48, 22,  9, 4, 2, 0, 1;
  124, 200, 105, 46, 21, 9, 4, 2, 0, 1;
  ...
In the partition 3+3+2+2+2+1+3+3+1, 2 is repeated consecutively 3 times, no part is repeated consecutively more than 3 times. (3 appears 4 times nonconsecutively.)
		

Crossrefs

Row sums: A000079(n-1) (2^(n-1)).
Inverse: A091614.
Square: A091615.
Convergent of columns: A034007.

Programs

  • Maple
    b:= proc(n, l, k) option remember; `if`(n=0, 1, add(`if`(
          i=l, 0, add(b(n-i*j, i, k), j=1..min(k, n/i))), i=1..n))
        end:
    T:= (n, k)-> b(n, 0, k)-b(n, 0, k-1):
    seq(seq(T(n, k), k=1..n), n=1..14);  # Alois P. Heinz, Feb 08 2017
  • Mathematica
    nn=15;Table[Take[Drop[Transpose[Map[PadRight[#,nn+1]&,Table[ CoefficientList[Series[1/(1-Sum[Sum[x^(j i),{i,1,k}]/Sum[x^(j i),{i,0,k}],{j,1,nn}])-1/(1-Sum[Sum[x^(j i),{i,1,k-1}]/Sum[x^(j i),{i,0,k-1}],{j,1,nn}]),{x,0,nn}],x],{k,1,nn}]]],1][[n]],n],{n,1,nn}]//Grid
    (* or *)
    Needs["Combinatorica`"];Table[Distribution[Map[Max,Map[Length,Map[Split, Level[Map[Permutations,IntegerPartitions[n,n]],{2}]],{2}]],Range[1,n]],{n,1,15}]//Grid (* Geoffrey Critzer, Mar 24 2014 *)
    b[n_, l_, k_] := b[n, l, k] = If[n == 0, 1, Sum[If[i == l, 0,
         Sum[b[n - i*j, i, k], {j, 1, Min[k, n/i]}]], {i, 1, n}]];
    T[n_, k_] := b[n, 0, k] - b[n, 0, k - 1];
    Table[T[n, k], {n, 1, 14}, {k, 1, n}] // Flatten (* Jean-François Alcover, Jun 04 2021, after Alois P. Heinz *)

Formula

G.f. for column k: 1/(1 - Sum_{i>=1} (x^i + x^(2*i) + ... + x^(k*i))/( 1 + x^i + x^(2*i) + ... + x^(k*i)) ) - 1/(1 - Sum_{i>=1} (x^i + x^(2*i) + ... + x^((k-1)*i))/( 1 + x^i + x^(2*i) + ... + x^((k-1)*i))). - Geoffrey Critzer, Mar 24 2014