A091643
Number of primes less than 10^n which do not contain the digit 9.
Original entry on oeis.org
4, 19, 108, 687, 4766, 35139, 267486, 2083814, 16531372, 133059504, 1082995490, 8896945667, 73651718719, 613664827254
Offset: 1
a(2) = 19 because of the 25 primes less than 10^2, 6 have at least one digit 9; 25-6 = 19.
-
NextPrim[n_] := Block[{k = n + 1}, While[ !PrimeQ[k], k++ ]; k]; c = 0; p = 1; Do[ While[ p = NextPrim[p]; p < 10^n, If[ Position[ IntegerDigits[p], 9] == {}, c++ ]]; Print[c]; p--, {n, 1, 8}] (* Robert G. Wilson v, Feb 02 2004 *)
A228413
Count of the first 10^n primes which do not contain the digit 1.
Original entry on oeis.org
1, 6, 54, 532, 4675, 34425, 262549, 2051466, 16831152, 155616459, 1529462564, 14830618421, 141585123501
Offset: 0
a(2) = 54 since there are 54 primes less than 541 (the 100th prime) that do not contain a 1. Namely: 2, 3, 5, 7, 23, 29, ..., 523.
-
Table[Length[Select[Range[10^n], DigitCount[Prime[#], 10, 1] == 0 &]], {n, 0, 5}] (* Robert Price, Mar 23 2020 *)
A228421
Count of the first 10^n primes which do not contain the digit 9.
Original entry on oeis.org
1, 8, 69, 620, 5010, 45732, 418142, 3785060, 32579606, 296601070, 2683254222, 24354108057, 212324183352
Offset: 0
a(1) = 8 since there are 8 primes in the first 10 (through 29) that do not contain a 9. Namely: 2, 3, 5, 7, 11, 13, 17, 23.
-
Table[Length[Select[Range[10^n], DigitCount[Prime[#], 10, 9] == 0 &]], {n, 0, 5}] (* Robert Price, Mar 23 2020 *)
-
def a(n):
count = 0
for k in range(1,10**n+1):
if '9' not in str(prime(k)):
count += 1
return count
n = 0
while n < 10:
print(a(n), end=', ')
n += 1
# Derek Orr, Jul 27 2014
A231412
Count of the first 10^n primes which do not contain the digit 0.
Original entry on oeis.org
1, 10, 91, 819, 7122, 61702, 557224, 5062320, 45002763, 395879190, 3579400605, 32487367715, 294505958253
Offset: 0
a(2) = 91 = 100-9 since only 9 primes less than 541 (the 100th prime) contain a zero. Namely: 101, 103, 107, 109, 307, 401, 409, 503, 509.
-
Table[Length[Select[Range[10^n], DigitCount[Prime[#], 10, 0] == 0 &]], {n, 0, 5}] (* Robert Price, Mar 23 2020 *)
A091635
Number of primes less than 10^n which do not contain the digit 1.
Original entry on oeis.org
4, 17, 101, 670, 4675, 34425, 262549, 2051466, 16312743, 131464721, 1071368863, 8809580516, 72986908554, 608542410004
Offset: 1
a(2) = 17 because of the 25 primes less than 10^2, 8 have at least one digit 1; 25-8 = 17.
-
NextPrim[n_] := Block[{k = n + 1}, While[ !PrimeQ[k], k++ ]; k]; c = 0; p = 1; Do[ While[ p = NextPrim[p]; p < 10^n, If[ Position[ IntegerDigits[p], 1] == {}, c++ ]]; Print[c]; p--, {n, 1, 8}] (* Robert G. Wilson v, Feb 02 2004 *)
-
from sympy import sieve # import/use primerange for larger terms
def a(n): return sum('1' not in str(p) for p in sieve.primerange(1, 10**n))
print([a(n) for n in range(1, 8)]) # Michael S. Branicky, Apr 17 2021
A091636
Number of primes less than 10^n which do not contain the digit 2.
Original entry on oeis.org
3, 22, 139, 877, 6235, 46105, 352155, 2747284, 21831323, 175881412, 1432781905, 11778245565, 97558533214, 813253056497
Offset: 1
a(2) = 22 because of the 25 primes less than 10^2, 3 have at least one digit 2. 25-3 = 22.
-
NextPrim[n_] := Block[{k = n + 1}, While[ !PrimeQ[k], k++ ]; k]; c = 0; p = 1; Do[ While[ p = NextPrim[p]; p < 10^n, If[ Position[ IntegerDigits[p], 2] == {}, c++ ]]; Print[c]; p--, {n, 1, 8}] (* Robert G. Wilson v, Feb 02 2004 *)
-
from sympy import primerange
def a(n): return sum('2' not in str(p) for p in primerange(2, 10**n))
print([a(n) for n in range(1, 7)]) # Michael S. Branicky, Mar 22 2021
A091637
Number of primes less than 10^n which do not contain the digit 3.
Original entry on oeis.org
3, 16, 102, 668, 4715, 34813, 265015, 2067152, 16413535, 132200223, 1076692515, 8849480283, 73288053795, 610860050965
Offset: 1
a(2)=16 because there are 25 primes less than 10^2, 9 have at least one digit 3; 25-9 = 16.
-
NextPrim[n_] := Block[{k = n + 1}, While[ !PrimeQ[k], k++ ]; k]; c = 0; p = 1; Do[ While[ p = NextPrim[p]; p < 10^n, If[ Position[ IntegerDigits[p], 3] == {}, c++ ]]; Print[c]; p--, {n, 1, 8}] (* Robert G. Wilson v, Feb 02 2004 *)
Table[Count[Prime[Range[PrimePi[10^n]]],?(DigitCount[#,10,3]==0&)],{n,8}] (* _Harvey P. Dale, Oct 04 2011 *)
-
good(n)=n=eval(Vec(Str(n)));for(i=1,#n,if(n[i]==3,return(1)));0
a(n)=my(s);forprime(p=2,10^n,s+=good(p));s \\ Charles R Greathouse IV, Oct 04 2011
-
from sympy import primerange
def a(n): return sum('3' not in str(p) for p in primerange(2, 10**n))
print([a(n) for n in range(1, 7)]) # Michael S. Branicky, Mar 16 2021
A091638
Number of primes less than 10^n which do not contain the digit 4.
Original entry on oeis.org
4, 22, 136, 903, 6361, 46545, 354123, 2761106, 21925170, 176544507, 1437663500, 11814853749, 97837428598, 815398741896
Offset: 1
a(2) = 22 because of the 25 primes less than 10^2, 3 have at least one digit 4; 25-3 = 22.
-
NextPrim[n_] := Block[{k = n + 1}, While[ !PrimeQ[k], k++ ]; k]; c = 0; p = 1; Do[ While[ p = NextPrim[p]; p < 10^n, If[ Position[ IntegerDigits[p], 4] == {}, c++ ]]; Print[c]; p--, {n, 1, 8}] (* Robert G. Wilson v, Feb 02 2004 *)
A091639
Number of primes less than 10^n which do not contain the digit 5.
Original entry on oeis.org
3, 22, 136, 905, 6310, 46549, 354910, 2765749, 21955845, 176781643, 1439380189, 11827571824, 97933795005, 816144146010
Offset: 1
a(2) = 22 because of the 25 primes less than 10^2, 3 have at least one digit 5; 25-3 = 22.
-
NextPrim[n_] := Block[{k = n + 1}, While[ !PrimeQ[k], k++ ]; k]; c = 0; p = 1; Do[ While[ p = NextPrim[p]; p < 10^n, If[ Position[ IntegerDigits[p], 5] == {}, c++ ]]; Print[c]; p--, {n, 1, 8}] (* Robert G. Wilson v, Feb 02 2004 *)
-
from sympy import primerange
def a(n): return sum('5' not in str(p) for p in primerange(2, 10**n))
print([a(n) for n in range(1, 7)]) # Michael S. Branicky, Mar 22 2021
A091640
Number of primes less than 10^n which do not contain the digit 6.
Original entry on oeis.org
4, 23, 136, 897, 6367, 46706, 355148, 2770239, 21984207, 176966593, 1440765209, 11838096715, 98014747908, 816769206831
Offset: 1
a(2) = 23 because of the 25 primes less than 10^2, 2 have at least one digit 6; 25-2 = 23.
-
NextPrim[n_] := Block[{k = n + 1}, While[ !PrimeQ[k], k++ ]; k]; c = 0; p = 1; Do[ While[ p = NextPrim[p]; p < 10^n, If[ Position[ IntegerDigits[p], 6] == {}, c++ ]]; Print[c]; p--, {n, 1, 8}] (* Robert G. Wilson v, Feb 02 2004 *)
-
from sympy import sieve # use slower primerange for larger terms
def a(n): return sum('6' not in str(p) for p in sieve.primerange(2, 10**n))
print([a(n) for n in range(1, 8)]) # Michael S. Branicky, Apr 23 2021
Showing 1-10 of 30 results.
Comments