A228413
Count of the first 10^n primes which do not contain the digit 1.
Original entry on oeis.org
1, 6, 54, 532, 4675, 34425, 262549, 2051466, 16831152, 155616459, 1529462564, 14830618421, 141585123501
Offset: 0
a(2) = 54 since there are 54 primes less than 541 (the 100th prime) that do not contain a 1. Namely: 2, 3, 5, 7, 23, 29, ..., 523.
-
Table[Length[Select[Range[10^n], DigitCount[Prime[#], 10, 1] == 0 &]], {n, 0, 5}] (* Robert Price, Mar 23 2020 *)
A231412
Count of the first 10^n primes which do not contain the digit 0.
Original entry on oeis.org
1, 10, 91, 819, 7122, 61702, 557224, 5062320, 45002763, 395879190, 3579400605, 32487367715, 294505958253
Offset: 0
a(2) = 91 = 100-9 since only 9 primes less than 541 (the 100th prime) contain a zero. Namely: 101, 103, 107, 109, 307, 401, 409, 503, 509.
-
Table[Length[Select[Range[10^n], DigitCount[Prime[#], 10, 0] == 0 &]], {n, 0, 5}] (* Robert Price, Mar 23 2020 *)
A231726
Count of the first 10^n primes containing at least one 0's digit.
Original entry on oeis.org
0, 9, 181, 2878, 38298, 442776, 4937680, 54997237, 604120810, 6420599395, 67512632285
Offset: 1
a(2)=9 because there are 9 primes not greater than 547 (the 100th prime) that contain a zero digit. Namely: 101, 103, 107, 109, 307, 401, 409, 503, 509.
-
cnt = 0; Table[Do[p = Prime[k]; If[MemberQ[IntegerDigits[p], 0], cnt++], {k, 10^(n - 1) + 1, 10^n}]; cnt, {n, 5}] (* T. D. Noe, Nov 13 2013 *)
A231790
Count of the first 10^n primes containing at least one 4's digit.
Original entry on oeis.org
0, 25, 279, 3363, 39395, 485191, 5269618, 56745409, 607655311, 6578438247, 68950399755
Offset: 1
a(2)=25 because there are 25 primes not greater than 541 (the 100th prime) that contain a 4's digit. Namely: 41, 43, 47, 149, 241, 347, 349, 401, 409, 419, 421, 431, 433, 439, 443, 449, 457, 461, 463, 467, 479, 487, 491, 499, 541.
-
cnt = 0; Table[Do[p = Prime[k]; If[MemberQ[IntegerDigits[p], 4], cnt++], {k, 10^(n - 1) + 1, 10^n}]; cnt, {n, 5}] (* T. D. Noe, Nov 13 2013 *)
A231792
Count of the first 10^n primes containing at least one 5's digit.
Original entry on oeis.org
1, 15, 292, 3365, 39360, 464466, 5262871, 56702805, 607358478, 6463119473, 68932485429
Offset: 1
a(2)=15 because there are 15 primes not greater than 541 (the 100th prime) that contain a 5's digit. Namely: 5, 53 59, 151, 157, 251, 257, 353, 359, 457, 503, 509, 521, 523, 541.
-
cnt = 0; Table[Do[p = Prime[k]; If[MemberQ[IntegerDigits[p], 5], cnt++], {k, 10^(n - 1) + 1, 10^n}]; cnt, {n, 5}] (* T. D. Noe, Nov 13 2013 *)
A231796
Count of the first 10^n primes containing at least one 9's digit.
Original entry on oeis.org
2, 31, 380, 4990, 54268, 581858, 6214940, 67420394, 703398930, 7316745778, 75645891943
Offset: 1
a(2)=31 because there are 31 primes not greater than 541 (the 100th prime) that contain a 9's digit. Namely: 19, 29, 59, 79, 89, 97, 109, 139, 149, 179, 191, 193, 197, 199, 229, 239, 269, 293, 349, 359, 379, 389, 397, 409, 419, 439, 449, 479, 491, 499, 509.
-
cnt = 0; Table[Do[p = Prime[k]; If[MemberQ[IntegerDigits[p], 9], cnt++], {k, 10^(n - 1) + 1, 10^n}]; cnt, {n, 5}] (* T. D. Noe, Nov 13 2013 *)
A228414
Count of the first 10^n primes which do not contain the digit 2.
Original entry on oeis.org
0, 7, 77, 697, 6497, 55552, 512100, 4710641, 42205969, 341224891, 2787791578, 22971326749, 190650687957
Offset: 0
a(1) = 7 since there are 7 primes less than 29 (the 10th prime) that do not contain a 2. Namely: 3, 5, 7, 11, 13, 17, 19.
-
Table[Length[Select[Range[10^n], DigitCount[Prime[#], 10, 2] == 0 &]], {n, 0, 5}] (* Robert Price, Mar 23 2020 *)
A228415
Count of the first 10^n primes which do not contain the digit 3.
Original entry on oeis.org
1, 7, 54, 534, 4909, 45405, 385008, 3539880, 32260781, 294001190, 2564080248, 23271246324, 211753431947
Offset: 0
a(1) = 7 since there are 7 primes in the first 10 (through 29) that do not contain a 3. Namely: 2, 5, 7, 11, 17, 19, 29.
-
Table[Length[Select[Range[10^n], DigitCount[Prime[#], 10, 3] == 0 &]], {n, 0, 5}] (* Robert Price, Mar 23 2020 *)
A228416
Count of the first 10^n primes which do not contain the digit 4.
Original entry on oeis.org
1, 10, 75, 721, 6637, 60605, 514809, 4730382, 43254591, 392344689, 3421561753, 31049600245, 282499317912
Offset: 0
a(1) = 10 since there are 10 primes in the first 10 (through 29) that do not contain a 4. Namely: 2, 3, 5, 7, 11, 13, 17, 19, 23, 29.
-
Table[Length[Select[Range[10^n], DigitCount[Prime[#], 10, 4] == 0 &]], {n, 0, 5}] (* Robert Price, Mar 23 2020 *)
A228417
Count of the first 10^n primes which do not contain the digit 5.
Original entry on oeis.org
1, 9, 85, 708, 6635, 60640, 535534, 4737129, 43297195, 392641522, 3536880527, 31067514571, 282635824867
Offset: 0
a(1) = 9 since there are 9 primes in the first 10 (through 29) that do not contain a 5. Namely: 2, 3, 7, 11, 13, 17, 19, 23, 29.
-
Table[Length[Select[Range[10^n], DigitCount[Prime[#], 10, 5] == 0 &]], {n, 0, 5}] (* Robert Price, Mar 23 2020 *)
Showing 1-10 of 19 results.