A091664 10-adic integer x=.....06619977392256259918212890624 satisfying x^3 = x.
4, 2, 6, 0, 9, 8, 2, 1, 2, 8, 1, 9, 9, 5, 2, 6, 5, 2, 2, 9, 3, 7, 7, 9, 9, 1, 6, 6, 0, 1, 4, 0, 0, 9, 0, 1, 6, 9, 8, 0, 3, 2, 3, 2, 4, 3, 2, 4, 7, 5, 5, 0, 0, 0, 1, 1, 8, 3, 6, 8, 0, 8, 5, 9, 0, 5, 6, 6, 1, 2, 6, 0, 0, 9, 8, 9, 0, 5, 8, 3, 9, 2, 0, 8, 9, 6, 1, 8, 0, 1, 9, 1, 3, 7, 0, 0, 3, 5, 9, 3
Offset: 0
Examples
x equals the limit of the (n+1) trailing digits of 4^(5^n): 4^(5^0) = (4), 4^(5^1) = 10(24), 4^(5^2) = 1125899906842(624), ... x = ...0557423423230896109004106619977392256259918212890624.
Links
- Seiichi Manyama, Table of n, a(n) for n = 0..9999 (terms 0..999 from Paul D. Hanna)
Programs
-
Mathematica
To calculate c, d, e, f use Mathematica algorithms for a, b and equations: c=a-b, d=1-c, e=b-1, f=a-1.
-
PARI
{a(n)=local(b=4,v=[]); for(k=1, n+1, b=b^5%10^k; v=concat(v,(10*b\10^k))); v[n+1]} \\ Paul D. Hanna, Jul 06 2006
-
PARI
(A091664_vec(n)=Vecrev(digits(lift(chinese(Mod(0,2^n),Mod(-1,5^n))))))(99) \\ M. F. Hasler, Jan 26 2020
Formula
x = r^2 where r = ...1441224165530407839804103263499879186432 (A120817). x = 10-adic lim_{n->oo} 4^(5^n). - Paul D. Hanna, Jul 06 2006
Comments