cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A091665 Triangle read by rows: T(n,k) is the number of nonseparable planar maps with 2*n+1 edges and a fixed outer face of 2*k edges which are invariant under a rotation of a 1/2 turn.

Original entry on oeis.org

1, 2, 2, 7, 8, 3, 30, 34, 21, 4, 143, 160, 114, 44, 5, 728, 806, 609, 308, 80, 6, 3876, 4256, 3315, 1908, 715, 132, 7, 21318, 23256, 18444, 11420, 5185, 1482, 203, 8, 120175, 130416, 104652, 67856, 34520, 12600, 2814, 296, 9, 690690, 746350, 603801, 404016, 221300, 93924, 27965, 4984, 414, 10
Offset: 1

Views

Author

Emeric Deutsch, Mar 03 2004

Keywords

Comments

Table II in the Brown reference.

Examples

			Triangle begins:
    1;
    2,   2;
    7,   8,   3;
   30,  34,  21,  4;
  143, 160, 114, 44, 5;
  ...
The T(n,n) = n solutions correspond to a regular polygon with 2n vertices and a single diagonal joining two diametrically opposite vertices. - _Andrew Howroyd_, Mar 29 2021
		

Crossrefs

Column 1 gives A006013, column 2 gives A046649, row sums give A000305.
Same as A046652 but with rows reversed.

Programs

  • Maple
    T := proc(n,k) if k<=n then k*sum((2*j-k+1)*(j-1)!*(3*n-k-j)!/(j-k+1)!/(j-k)!/(2*k-j-1)!/(n-j)!,j=k..min(n,2*k-1))/(2*n-k+1)! else 0 fi end: seq(seq(T(n,k),k=1..n),n=1..11);
  • Mathematica
    t[n_, k_] := If[k <= n, k*Sum[(2*j-k+1)*(j-1)!*(3*n-k-j)!/(j-k+1)!/(j-k)!/(2*k-j-1)!/(n-j)!, {j, k, Min[n, 2*k-1]}]/(2*n-k+1)!, 0]; Table[t[n, k], {n, 1, 11}, {k, 1, n}] // Flatten (* Jean-François Alcover, Jan 20 2014, after Maple *)
  • PARI
    T(n,k) = {k*sum(j=k, min(n, 2*k-1), (2*j-k+1)*(j-1)!*(3*n-k-j)!/((j-k+1)!*(j-k)!*(2*k-j-1)!*(n-j)!))/(2*n-k+1)!}
    for(n=1, 10, for(k=1, n, print1(T(n,k), ", ")); print) \\ Andrew Howroyd, Mar 29 2021

Formula

T(n, k) = k*(Sum_{j=k..min(n, 2*k-1)} (2*j-k+1)*(j-1)!*(3*n-k-j)!/((j-k+1)!*(j-k)!*(2*k-j-1)!*(n-j)!))/(2*n-k+1)! for k<=n and T(n, k)=0 for k>n.

Extensions

Name clarified by Andrew Howroyd, Mar 29 2021