cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A091672 Decimal expansion of (4*(18+12*sqrt(2)-10*sqrt(3)-7*sqrt(6)))*EllipticK((2-sqrt(3))*(-sqrt(2)+sqrt(3)))^2/Pi^2.

Original entry on oeis.org

5, 0, 5, 4, 6, 2, 0, 1, 9, 7, 1, 7, 3, 2, 6, 0, 0, 6, 0, 5, 2, 0, 0, 4, 0, 5, 3, 2, 2, 7, 1, 4, 0, 2, 5, 9, 9, 8, 5, 1, 2, 9, 0, 1, 4, 8, 1, 7, 4, 2, 0, 8, 9, 2, 1, 8, 8, 9, 9, 3, 4, 8, 7, 8, 8, 6, 0, 2, 8, 7, 7, 3, 4, 5, 1, 1, 7, 3, 8, 1, 6, 8, 0, 0, 5, 3, 7, 2, 4, 7, 0, 6, 9, 8, 9, 6, 0, 3, 7, 9, 7, 5
Offset: 0

Views

Author

Eric W. Weisstein, Jan 27 2004

Keywords

Comments

Watson's third triple integral.

Examples

			0.505462019717326006052004053227140259985129014817420892188993487886...
		

Crossrefs

Programs

  • Maple
    evalf((4*(18+12*sqrt(2)-10*sqrt(3)-7*sqrt(6)))*EllipticK((2-sqrt(3))*(-sqrt(2)+sqrt(3)))^2/Pi^2, 120); # Vaclav Kotesovec, Apr 22 2015
  • Mathematica
    RealDigits[ N[ (4*(18 + 12*Sqrt[2] - 10*Sqrt[3] - 7*Sqrt[6])*EllipticK[(2 - Sqrt[3])^2*(-Sqrt[2] + Sqrt[3])^2]^2)/Pi^2, 102]][[1]] (* Jean-François Alcover, Nov 12 2012, after Eric W. Weisstein *)
  • PARI
    4*(18+12*sqrt(2)-10*sqrt(3)-7*sqrt(6))*ellK((2-sqrt(3))*(sqrt(3)-sqrt(2)))^2/Pi^2 \\ Charles R Greathouse IV, Feb 04 2025

Extensions

Name corrected by Charles R Greathouse IV, Feb 04 2025