A091672 Decimal expansion of (4*(18+12*sqrt(2)-10*sqrt(3)-7*sqrt(6)))*EllipticK((2-sqrt(3))*(-sqrt(2)+sqrt(3)))^2/Pi^2.
5, 0, 5, 4, 6, 2, 0, 1, 9, 7, 1, 7, 3, 2, 6, 0, 0, 6, 0, 5, 2, 0, 0, 4, 0, 5, 3, 2, 2, 7, 1, 4, 0, 2, 5, 9, 9, 8, 5, 1, 2, 9, 0, 1, 4, 8, 1, 7, 4, 2, 0, 8, 9, 2, 1, 8, 8, 9, 9, 3, 4, 8, 7, 8, 8, 6, 0, 2, 8, 7, 7, 3, 4, 5, 1, 1, 7, 3, 8, 1, 6, 8, 0, 0, 5, 3, 7, 2, 4, 7, 0, 6, 9, 8, 9, 6, 0, 3, 7, 9, 7, 5
Offset: 0
Examples
0.505462019717326006052004053227140259985129014817420892188993487886...
Links
- G. C. Greubel, Table of n, a(n) for n = 0..10000
- D. H. Bailey, J. M. Borwein, V. Kapoor and E. Weisstein, Ten Problems in Experimental Mathematics
- Eric Weisstein's World of Mathematics, Watson's Triple Integrals
Programs
-
Maple
evalf((4*(18+12*sqrt(2)-10*sqrt(3)-7*sqrt(6)))*EllipticK((2-sqrt(3))*(-sqrt(2)+sqrt(3)))^2/Pi^2, 120); # Vaclav Kotesovec, Apr 22 2015
-
Mathematica
RealDigits[ N[ (4*(18 + 12*Sqrt[2] - 10*Sqrt[3] - 7*Sqrt[6])*EllipticK[(2 - Sqrt[3])^2*(-Sqrt[2] + Sqrt[3])^2]^2)/Pi^2, 102]][[1]] (* Jean-François Alcover, Nov 12 2012, after Eric W. Weisstein *)
-
PARI
4*(18+12*sqrt(2)-10*sqrt(3)-7*sqrt(6))*ellK((2-sqrt(3))*(sqrt(3)-sqrt(2)))^2/Pi^2 \\ Charles R Greathouse IV, Feb 04 2025
Extensions
Name corrected by Charles R Greathouse IV, Feb 04 2025
Comments