cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A091784 Numbers n with digits in nondecreasing order such that sum of the reciprocal of digits is an integer.

Original entry on oeis.org

1, 11, 22, 111, 122, 236, 244, 333, 1111, 1122, 1236, 1244, 1333, 2222, 2488, 2666, 3366, 3446, 4444, 11111, 11122, 11236, 11244, 11333, 12222, 12488, 12666, 13366, 13446, 14444, 22236, 22244, 22333, 26999, 28888, 33999, 34688, 36666, 44488, 44666, 55555, 111111, 111122
Offset: 1

Views

Author

Amarnath Murthy, Feb 17 2004

Keywords

Comments

236 is a member and 263, 326, 362, 623, 632 which are digit permutations of 236 are not included (unlike A037268). Subsidiary sequences: (1) Sum of the reciprocals of all n-digit members. (2) Let the terms with reciprocal sum n be arranged in nondecreasing order. (i) The n-th term in the above sequence (2). (ii) The number of digits in this term of (i).
Subsequence of A009994. - David A. Corneth, Sep 05 2016

Examples

			236 is a member as 1/2 + 1/3 +1/6 = 1.
		

Crossrefs

Programs

  • Mathematica
    Do[l = IntegerDigits[n]; If[Intersection[l, {0}] == {} && IntegerQ[Plus @@ Map[(1/#)&, l]] && Sort[l] == l, Print[n]], {n, 1, 10^5}] (* Ryan Propper, Aug 27 2005 *)
    Select[Range[50000],Min[Differences[IntegerDigits[#]]]>=0&&IntegerQ[ Total[ 1/IntegerDigits[#]]]&] (* Harvey P. Dale, Aug 22 2016 *)
  • PARI
    is(n)=my(d=digits(n), v=vecsort(d),s); if(d==v, s=sum(i=1,#d,1/d[i]); s==s\1, 0) \\ David A. Corneth, Sep 06 2016
    
  • PARI
    getNDigitTerms(n)=my(v=List(),t); forvec(x=vector(8,i,[0,n]), my(u=vector(n,i,1),X=concat(x,n)); for(i=2,9, for(j=X[i-1]+1, X[i],u[j]=i)); if(denominator(sum(i=1,#u,1/u[i]))==1, listput(v,fromdigits(u))),1); Set(v) \\ Charles R Greathouse IV, Sep 06 2016

Extensions

More terms from Ryan Propper, Aug 27 2005
Name corrected by David A. Corneth, Sep 05 2016