A091784 Numbers n with digits in nondecreasing order such that sum of the reciprocal of digits is an integer.
1, 11, 22, 111, 122, 236, 244, 333, 1111, 1122, 1236, 1244, 1333, 2222, 2488, 2666, 3366, 3446, 4444, 11111, 11122, 11236, 11244, 11333, 12222, 12488, 12666, 13366, 13446, 14444, 22236, 22244, 22333, 26999, 28888, 33999, 34688, 36666, 44488, 44666, 55555, 111111, 111122
Offset: 1
Examples
236 is a member as 1/2 + 1/3 +1/6 = 1.
Links
- Harvey P. Dale and David A. Corneth, Table of n, a(n) for n = 1..10001 (First 237 terms from Harvey P. Dale)
Programs
-
Mathematica
Do[l = IntegerDigits[n]; If[Intersection[l, {0}] == {} && IntegerQ[Plus @@ Map[(1/#)&, l]] && Sort[l] == l, Print[n]], {n, 1, 10^5}] (* Ryan Propper, Aug 27 2005 *) Select[Range[50000],Min[Differences[IntegerDigits[#]]]>=0&&IntegerQ[ Total[ 1/IntegerDigits[#]]]&] (* Harvey P. Dale, Aug 22 2016 *)
-
PARI
is(n)=my(d=digits(n), v=vecsort(d),s); if(d==v, s=sum(i=1,#d,1/d[i]); s==s\1, 0) \\ David A. Corneth, Sep 06 2016
-
PARI
getNDigitTerms(n)=my(v=List(),t); forvec(x=vector(8,i,[0,n]), my(u=vector(n,i,1),X=concat(x,n)); for(i=2,9, for(j=X[i-1]+1, X[i],u[j]=i)); if(denominator(sum(i=1,#u,1/u[i]))==1, listput(v,fromdigits(u))),1); Set(v) \\ Charles R Greathouse IV, Sep 06 2016
Extensions
More terms from Ryan Propper, Aug 27 2005
Name corrected by David A. Corneth, Sep 05 2016
Comments