A091888 Irregularity index of prime(n): number of numbers k, 1 <= k <= (p-3)/2, such that p = prime(n) divides the numerator of the Bernoulli number B(2k).
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 1, 0, 0, 1, 0, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 1, 0, 1, 0, 0, 1, 1, 1, 1, 0, 0, 0, 0, 1, 0, 2, 0, 0, 0, 2, 0, 1, 0, 1, 1, 0, 1, 0, 1, 0, 0, 0, 0, 1, 1, 2, 0, 0, 3, 0, 0, 0, 0, 1, 1, 2, 1, 0, 0, 0, 1
Offset: 2
Keywords
Links
- Amiram Eldar, Table of n, a(n) for n = 2..10001
Crossrefs
Programs
-
Mathematica
irregPrimeIndex[n_] := Block[{p = Prime[n], cnt = 0, k = 1}, While[ 2k + 2 < p, If[ Mod[ Numerator[ BernoulliB[ 2k]], p] == 0, cnt++]; k++]; cnt]; Array[ irregPrimeIndex, 105, 2] (* Robert G. Wilson v, Sep 20 2012 *)
-
PARI
a(n)=sum(i=1,(prime(n)-1)/2,if(numerator(bernfrac(2*i))%prime(n),0,1)) \\ corrected by Amiram Eldar, May 10 2022
Formula
0 if p is a regular prime; > 0 if p is an irregular prime.
Comments