cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A091899 Decimal expansion of (1+sqrt(5)+sqrt(2*(5+sqrt(5))))/(2*e^((2*Pi)/5)).

Original entry on oeis.org

1, 0, 0, 1, 8, 6, 7, 4, 3, 6, 2, 1, 9, 3, 1, 8, 6, 0, 6, 0, 7, 7, 2, 2, 7, 6, 8, 0, 4, 2, 4, 1, 5, 7, 0, 8, 7, 1, 2, 2, 4, 2, 4, 1, 2, 7, 4, 2, 7, 4, 9, 7, 0, 5, 4, 5, 0, 0, 1, 3, 0, 1, 9, 0, 2, 1, 0, 9, 4, 9, 7, 9, 8, 9, 0, 9, 5, 6, 2, 8, 2, 5, 7, 1, 2, 9, 3, 8, 2, 5, 0, 3, 5, 3, 0, 9, 9, 9, 6, 2, 5, 5
Offset: 1

Views

Author

Eric W. Weisstein, Feb 09 2004

Keywords

Comments

Has a nice (non-simple) continued fraction due to Ramanujan.

Examples

			1.00186743...
		

Crossrefs

Cf. A091667.

Programs

  • Magma
    SetDefaultRealField(RealField(100)); R:= RealField(); (1 +Sqrt(5) +Sqrt(2*(5 +Sqrt(5))))/(2*Exp((2*Pi(R))/5)); // G. C. Greubel, Sep 27 2018
  • Mathematica
    RealDigits[(1 +Sqrt[5] +Sqrt[2*(5 +Sqrt[5])])/(2*Exp[(2*Pi)/5]), 10, 100][[1]] (* G. C. Greubel, Sep 27 2018 *)
  • PARI
    default(realprecision, 100); (1 +sqrt(5) +sqrt(2*(5 +sqrt(5))))/( 2*exp((2*Pi)/5)) \\ G. C. Greubel, Sep 27 2018
    

Formula

Equals 1/A091667.

Extensions

Offset corrected by R. J. Mathar, Feb 05 2009