A091908 Number of interior intersection points made by the straight line segments connecting the edges of an equilateral triangle with the n-1 points resulting from a subdivision of the sides into n equal pieces, counting coinciding intersection points only once.
0, 1, 12, 13, 48, 49, 108, 109, 192, 193, 300, 301, 432, 433, 576, 589, 768, 769, 972, 961, 1200, 1201, 1452, 1405, 1728, 1729, 2028, 2029, 2352, 2341, 2700, 2701, 3072, 3073, 3444, 3469, 3888, 3889, 4332, 4297, 4800, 4777, 5292, 5293, 5724, 5809, 6348
Offset: 1
Keywords
Examples
a(3)=12 because the 3*2 line segments intersect each other in 12 distinct points (see pictures given at link) a(4)=13 because the 27 intersections form 6 two line intersection points and 7 three line intersection points.
Links
Crossrefs
Programs
-
PARI
for(n=1,70,conc=0;for(i=1,n-1,for(j=1,n-1,for(k=1,n-1,if(i*j*k/((n-i)*(n-j)*(n-k))==1,conc++))));print1(3*(n-1)^2-2*conc,",")) \\ Herman Jamke (hermanjamke(AT)fastmail.fm), Oct 26 2006
Extensions
More terms from T. D. Noe, Jun 29 2005
More terms from Herman Jamke (hermanjamke(AT)fastmail.fm), Oct 26 2006
Comments