cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A091948 Number of values of k, 0 <= k <= n, satisfying A002487(k) = A002487(n).

Original entry on oeis.org

1, 1, 2, 1, 3, 1, 2, 2, 4, 1, 3, 1, 3, 2, 4, 2, 5, 3, 3, 1, 5, 1, 4, 2, 4, 3, 5, 2, 6, 4, 4, 6, 6, 1, 7, 1, 5, 1, 5, 1, 7, 2, 3, 1, 8, 1, 6, 2, 5, 3, 7, 2, 9, 2, 4, 3, 8, 2, 8, 4, 6, 4, 10, 2, 7, 9, 3, 5, 11, 1, 5, 3, 7, 1, 6, 1, 10, 1, 3, 4, 9, 2, 7, 1, 5, 1, 5, 2, 12, 2, 3, 2, 11, 1, 6, 8, 6, 9, 7, 2, 12, 3, 4
Offset: 0

Views

Author

Benoit Cloitre, Mar 11 2004

Keywords

Comments

This sequence is the ordinal transform of A002487. - Rémy Sigrist, Dec 28 2022

Crossrefs

Programs

  • Maple
    b:= proc(n) option remember; `if`(n<2, n,
          (q-> b(q)+(n-2*q)*b(n-q))(iquo(n, 2)))
        end:
    p:= proc() 0 end:
    a:= proc(n) option remember; local t;
          t:= b(n); p(t):= p(t)+1
        end:
    seq(a(n), n=0..100);  # Alois P. Heinz, Dec 31 2022
  • Mathematica
    b[n_] := b[n] = If[n < 2, n,
       Function[q, b[q] + (n - 2*q)*b[n - q]][Quotient[n, 2]]];
    p[_] = 0;
    a[n_] := a[n] = With[{t = b[n]}, p[t] = p[t]+1];
    Table[a[n], {n, 0, 100}] (* Jean-François Alcover, May 20 2024, after Alois P. Heinz *)
  • PARI
    \\ See Links section.

Formula

a(n) = 1 iff n belongs to A091945. - Rémy Sigrist, Dec 28 2022

Extensions

a(0) = 1 prepended and name adapted by Rémy Sigrist, Dec 28 2022