cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-1 of 1 results.

A143266 Triangle read by rows: with a(n,m,k) defined in A091969: T(n,m)=a(n, 2^(n - 1), 2^(m - 1)).

Original entry on oeis.org

1, 1, 1, 0, 1, 1, 0, 1, 4, 4, 0, 0, 4, 28, 28, 0, 0, 0, 76, 550, 550, 0, 0, 0, 0, 4465, 28456, 28456, 0, 0, 0, 0, 1, 828038, 4134861, 4134861, 0, 0, 0, 0, 0, 4205, 473635054, 1781622569, 1781622569
Offset: 1

Views

Author

Roger L. Bagula and Gary W. Adamson, Oct 21 2008

Keywords

Comments

Row sums are: 1, 2, 2, 9, 60, 1176, 61377, 9097761, 4036884397 ... .

Examples

			{1},
{1, 1},
{0, 1, 1},
{0, 1, 4, 4},
{0, 0, 4, 28, 28},
{0, 0, 0, 76, 550, 550},
{0, 0, 0, 0, 4465, 28456, 28456},
{0, 0, 0, 0, 1, 828038, 4134861, 4134861},
{0, 0, 0, 0, 0, 4205, 473635054, 1781622569, 1781622569}
		

Crossrefs

Cf. A091969.

Programs

  • Mathematica
    Clear[a, l, s, p, n]; a[1, s_, p_] := a[1, s, p] = If[1 <= s <= p, 1, 0]; a[n_, s_, p_] := a[n, s, p] = If[s < 2^(n - 1), 0, Sum[a[n - 1, s - k, Min[p, k]], {k, 1, Min[p, s]}]]; Table[Table[ a[n, 2^(n - 1), 2^(m - 1)], {m, 1, n}], {n, 1, 9}]; Flatten[%]

Formula

With a(n,m,k) defined in A091969: T(n,m)=a(n, 2^(n - 1), 2^(m - 1)).

Extensions

Edited by Michel Marcus and Joerg Arndt, Apr 22 2013
Showing 1-1 of 1 results.